Introduction & Theia

Gary Mamon (IAP), Introduction & Theia, 11 Sept. 2024

Goals of workshop

What scientific breakthroughs with very high precision astrometry?

What telescopes & instruments to achieve these scientific results?

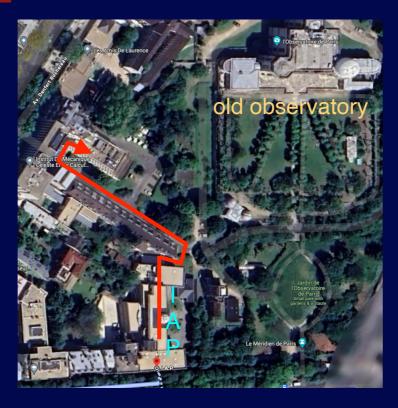
Strategic questions:

- focus on a single telescope OR go for many?
- combine all science OR split exoplanets around nearby stars from rest?
- federate scientists from ≠ continents or work separately?

Where did you come from?

Program

2 last-day cancellations for the Summary


Gary Mamon (IAP), Introduction & Theia, 11 Sept. 2024

	Wednesday		Thursday		Friday		
9:00						Sozzetti	
9:15 9:30				Boehm			
9:30		Mamon			Science: stellar satellites	Tuthill	
10:00	Telescopes &		Science: Dark matter II	Read		2	
10:15	missions I	Malbet	-	Kim		Carry	
10:30		Gouda		Pfalzner	Col	ffee	
10:45 11:00							
11:15	Cot	ffee	Cot	Coffee			
11:30					Instrumentation II	Discussion	
11:45		Hobbs		Roberge			
12:00	Telescopes &	Van Belle	T 1 0	Gaudi		Watkins	
12:15	missions II		Telescopes & Missions III		Science:		
12:30 12:45		Gandhi		Quanz	Clusters & MW satellites	Gnedin	
13:00				Vasisht		Demianenko	
13:15							
13:30		nch				ich	
13:45	Eu		Lu	nch	Lui		
14:00							
14:15 14:30							
14:30		Vitral			Science: Gravitational waves & Particle physics		
15:00	Science: Dark Matter I	Katz		Hunt		Garcia-Bellido	
15:15	Dark Matter 1	Chakrabarti	Telescopes &	Discussion		Crosta	
15:30		Chanabarti	Missions IV			GIUSIA	
15:45	Coffee					Chen	
16:00					Coffee		
16:15 16:30		Maccarone	Coffee				
16:45		Schwartzman					
17:00	Science - BHs, neutron stars &			Lacour	Science: cosmology & general discussion	Darling	
17:15	Cosmology	Nierenberg				Discussion	
17:30		Lu		Busonero			
17:45			Instrumentation I	Gai			
18:00 18:15						1	
18:15				Shao	Summary	TBD	
18:45	Cocktail			Skoffelt	EN	ND	
19:00			END				
19:15							
19:30							
19:45							
20:00							
20:15 20:30							
20:30							
21:00			Din	iner			

Food & drinks

Coffee breaks in entrance hall (except Friday: in the 2nd floor Forum)

free Lunches at Observatory cafeteria, 3 min walk on campus

outside tables available

Cocktail this evening at 6:30PM in entrance hall

Workshop dinner Thursday evening at 7:30PM Chez Lionel

eduroam

wisecure login: astrometry2024 password: see blackboard

Other practical issues

Do not try to close or re-open windows!

Remote participants

31 out of 76 participants

We value your input!

Chairpersons: try to take questions from remote audience 1st

Remote participants when not speaking

- Make sure you can see & hear the meeting
- Test your microphone (for questions)
- If anything goes wrong, please raise your Zoom-hand
- Please turn off your microphone except for your talk or question

8 Remote speakers: ditto +

- Check the program for the time of your talk
- Be online > 10 minutes before

IAP Code of Conduct

The Institut d'Astrophysique de Paris (IAP) promotes a respectful, safe, and ethical research environment. As a reminder of the obvious, this includes:

• **Respect** for all people working at IAP (permanent and non-permanent) and intolerance of any discrimination, violence or harrassment;

- The recognition of the need for open communication and civility;
- The promotion of diversity and inclusivity;
- Scientific integrity, upholding the highest professional and ethical standards in all conduct.

Discrimination: Everyone at IAP should treat each other with equity and respect, regardless of personal attributes including but not limited to: (alphabetically) age, disability, ethnicity, gender, gender expression, gender identity, lactation, nationality, physical appearance, political affiliation, pregnancy, religion, sexual orientation, and status as a caregiver (including as a parent).

Harassment: By law, the following behaviors are prohibited: verbal, non-verbal or physical harassment of any kind, disparagement, intimidation, exclusion, spreading personal rumors, humiliation.

Behaviors and language acceptable to one person may not be to another. At IAP, everyone must make every effort to ensure that words and actions communicate respect for others. In particular, sexual harassment is not tolerated at the IAP, including but not limited to inappropriate verbal and physical conduct, unwelcome sexual advances, and requests for sexual favors.

Scientific Misconduct: Scientific research has to be performed in a well-documented and ethically sound manner. Falsification of data or results, plagiarism, taking credit for others' work or any other scientific misconduct will not be tolerated.

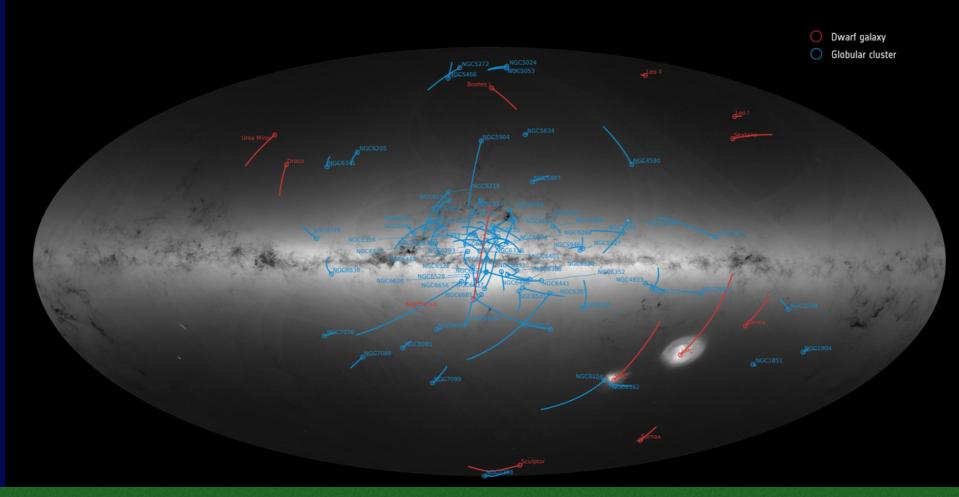
Who to contact: me or other organisors

be kind to others, esp. young ones!

Recording of workshop?

All talks or some talks?

Questions after talks?

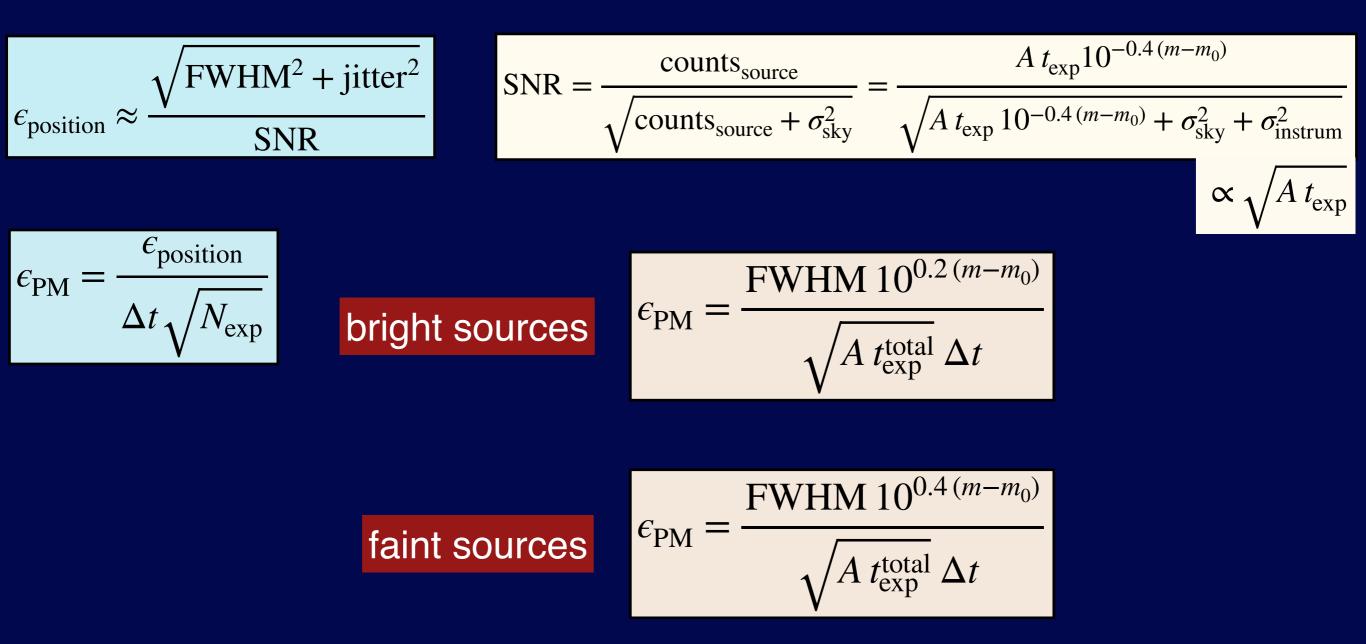

Discussions?

Theia

Astrometric science with Gaia

eesa

→ GAIA'S GLOBULAR CLUSTERS AND DWARF GALAXIES


The Gaia revolution

- Kinematics of *Milky Way* stars (thin & thick disk, bar, halo...)
- Bulk motions of globular clusters & dwarf spheroidals
- Detection of new members of Local Group
- Internal kinematics of globular clusters: what lurks in their cores?
- Black holes in binaries, isolated
- many more!

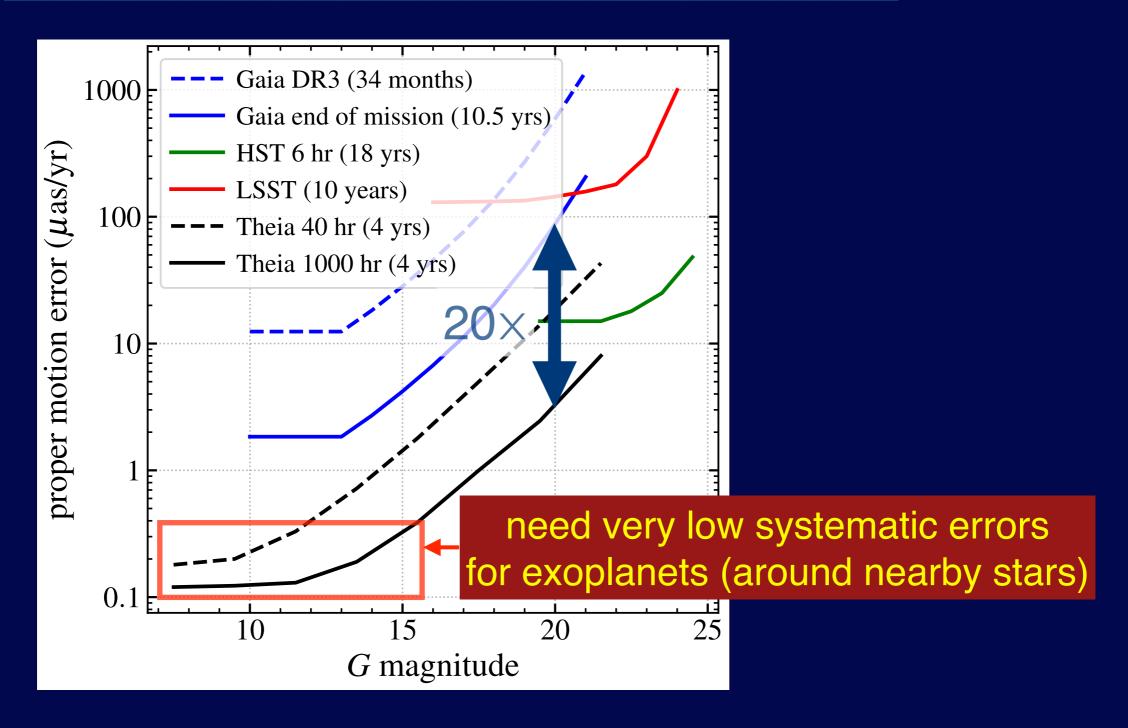
After Gaia... ... Theia?

very long (1000hr) monitoring on selected targets

Proper motion error

Astrometric mission: 20x 5-yr Gaia's accuracy

	Gaia 10 year	Theia deep	improvement
Telescope Aperture	$1.45 \times 0.5 = 0.73 \text{ m}^2$	0.8 m → 0.40 m ²	0.55
Field of view		0.5 deg	
Coverage	Survey	Pointed	
Astrometry	Global	Differential	
Exposure time per field	$160 \times 9 (CCD) \times 4.4 \text{ sec} = 1.76 \text{ hr}$	25 × 40 hr = 1000 hr	570


Astrometric mission: 20x 5-yr Gaia's accuracy

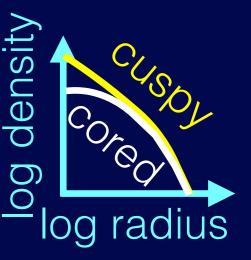
	Gaia 10 year	Theia deep	improvement			
Telescope Aperture	$1.45 \times 0.5 = 0.73 \text{ m}^2$	0.8 m → 0.40 m ²	0.55			
Field of view		0.5 deg				
Coverage	Survey	Pointed				
Astrometry	Global	Differential				
Exposure time per field	$160 \times 9 (CCD) \times 4.4 \text{ sec} = 1.76 \text{ hr}$	25 × 40 hr = 1000 hr	570			
Additional factors	2D vs 1D astrometry: 1.4, Gaia Stray light: 1.9					
naïve global gain	= $(0.55 \times 570)^{1/2}$ = 18 \rightarrow 45 after additional factors					
Proper motion accuracy <i>G</i> =10 star	2 µas/yr	0.12 µas/yr	17			
Proper motion accuracy <i>G</i> =15 star	5 µas/yr	0.4 µas/yr	12			
Proper motion accuracy <i>G</i> =20 star	100 µas/yr	5 µas/yr	20			

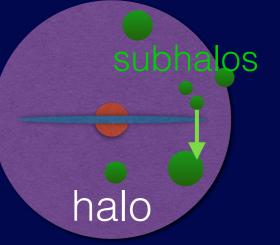
Proper motion accuracy

Gaia: based on ESA web site on Gaia performance

HST: based on analysis of Draco dwarf by Vitral+24

What scientific breakthroughs with very high-precision astrometry?


incomplete list: you will enhance it!


Nature of Dark Matter: cold & collisionless?

a. DM halos of dwarf spheroidal galaxies are *cuspy*

bayesian mass/orbit modeling of 3 dwarf spheroidals using proper motions see talks by E. Vitral, J. Read, L. Watkins

b. Numerous dark subhalos in Milky Way detect by kinematic disturbances to disk stars in 16 lines of sight above/below Galactic Plane

c. Dark Matter halos have prolate shapes measure direction of proper motion in 3 distant hypervelocity stars see talk by O. Gnedin oblate oblate prolate (ACDM)

2) Black holes & Neutron Stars

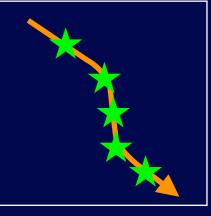
BH detection by astrometric wobble

see talk by J. Lu

Neutron star physics:

see talk by T. Maccarone

- formation
- · kick
- equation of state
- misalignment magnetic misalignments

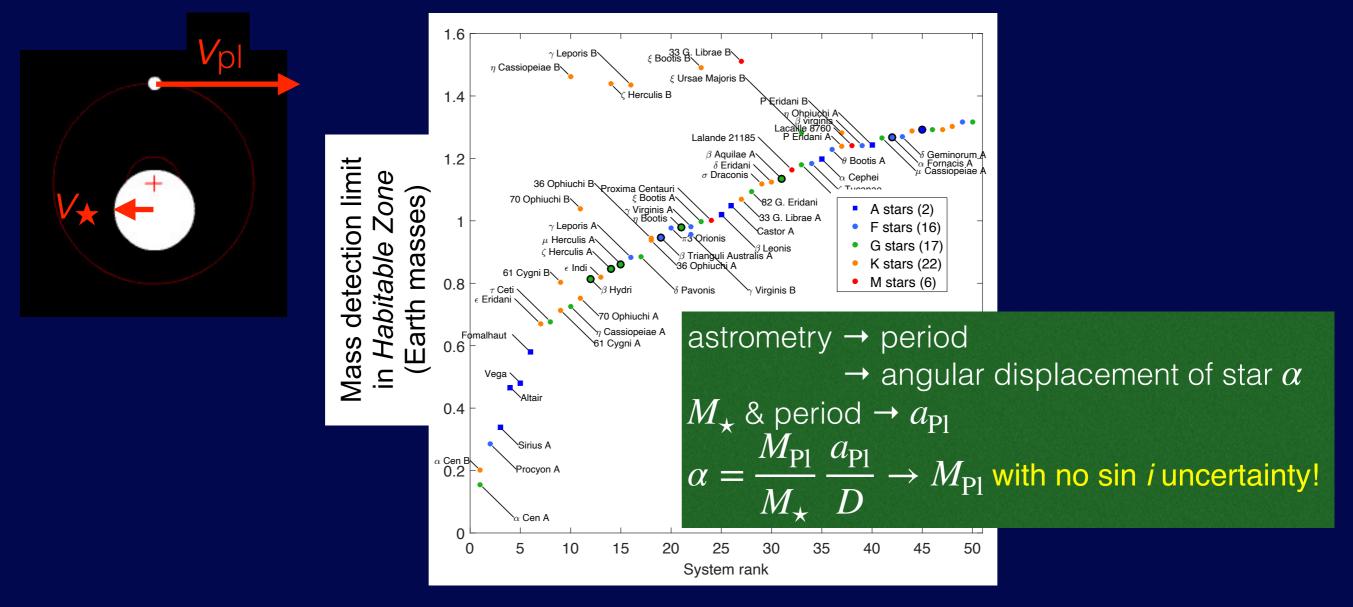

Advances from pointed super-precision astrometric mission

Possible Breakthroughs:

 \star Detection of

- Primordial Black Holes
- ➡ Ultra-Compact Mini-Halos

see talk by J. Garcia-Bellido

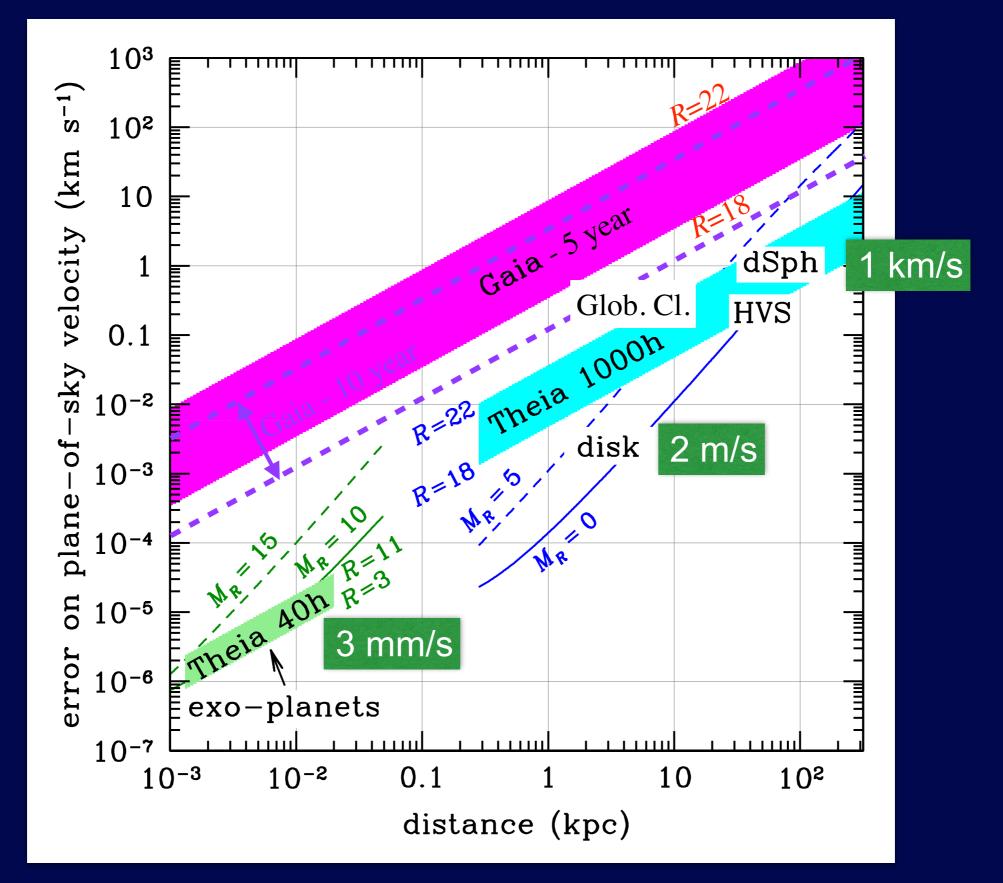

RA

★ Detection of

- Primordial Gravitational Waves
- Gravitational Waves from merging Super-Massive BHs

coherent-time distortions in velocity field

3. Census of Nearby Habitable Exoplanets see talks by A. Sozzetti & P. Tuthill



Census is Complete & Reliable

validated with detailed mocks Meunier & Lagrange 22

→ allows efficient followup spectroscopy → biospheres

Plane-of-sky velocity errors

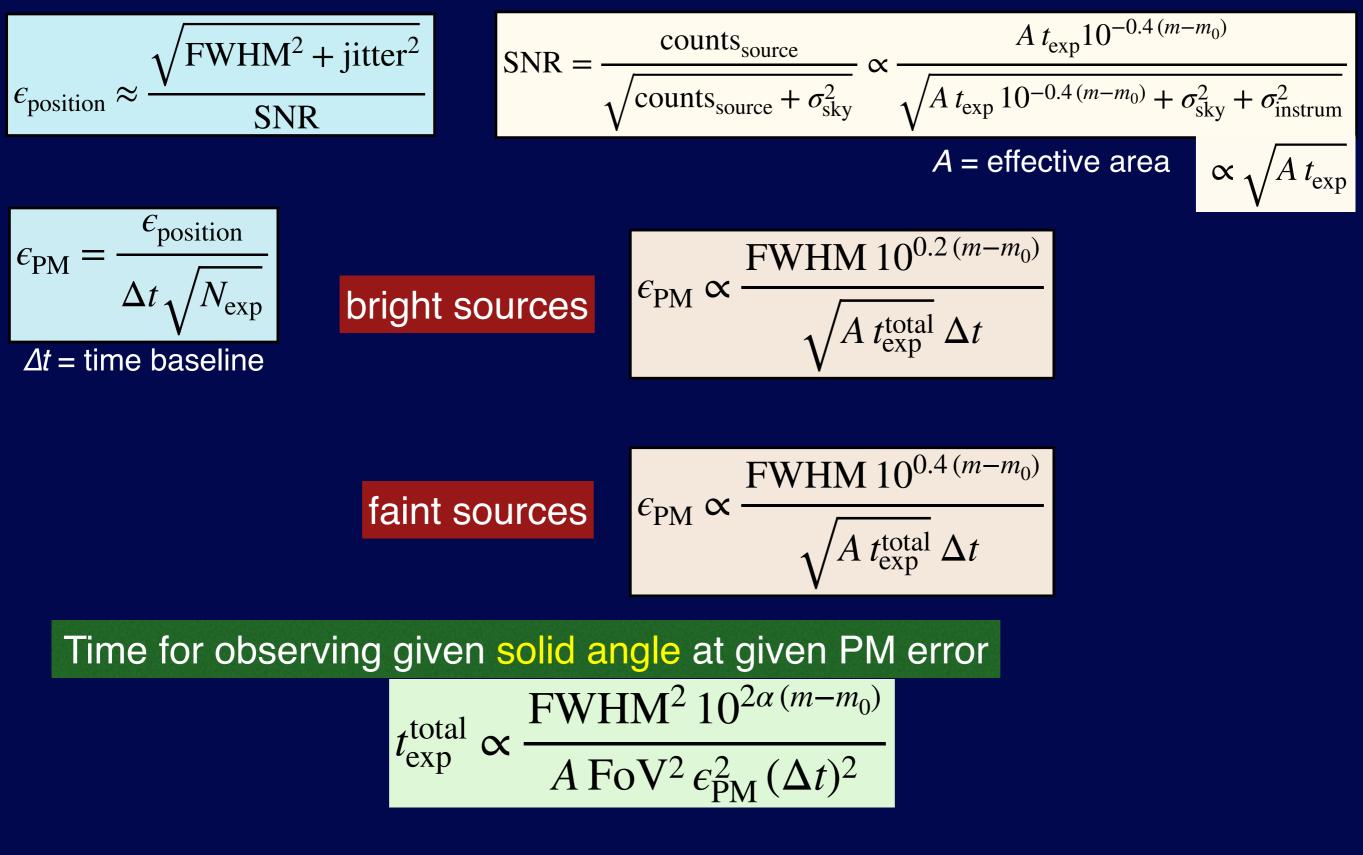
History of Theia proposals to ESA

- M3: NEAT, PI F. Malbet
- S1: MicroNEAT PI. F. Malbet

Main driver:

- M4 Theia PI F. Malbet
- M5 Theia PI C. Boehm
- M6/7 Theia PIA. Sozzetti

ESA: lack of Technology Readiness!


Exoplanets: requires very low systematics @ bright end \rightarrow complicates the instrument (metrology)

Before Theia?

Think what Gaia-10 years will bring relative to DR3 (2.3 years)

What other telescpes will do as well if not better?

Proper motion error (repeat)

Comparison of telescopes for large fields

	diameter	effective area	⟨FoV ⟩	pixel size	PM "time" = pixel ² / (FoV ² area)
unit	m	m²	arcmin	milli-arcsec	mas² (arcmin² m²)
HST/WFC3	2.4	4	2.7	40	54.87
HST/ACS	2.4	4	3.5	50	51.02
Gaia	1.45x0.5	0.7	60	59	1.38
JWST/NIRCAM	6.5	25	2.2	70	40.50
Euclid/VIS	1.2	1.0	45	100	4.94
Rubin/LSST	8.4	35	210	200	0.03
Xuntian	2.0	4	63	80	0.40
Roman/WFI	2.4	4.5	32	110	2.63
Theia	0.8	0.5	30	64	9.10
HWO/UVIS	6.5	100	2.5	17.3	0.48
HWO numbers fixed after talk					

LSST is best, then Xuntian & HWO, then Gaia, then Roman

Euclid as an astrometric tool

Successful Euclid launch by SpaceX

- \rightarrow mission extended to 10-14 years (survey takes 6-7 years)
 - \rightarrow expect large key projects for remaining ~7 years:
 - \rightarrow one could be Theia-like!

		eff. area	⟨FoV ⟩	pixel size	PM "time"
	unit	m²	arcmin	milli-arcsec	mas² (arcmin² m²)
	HST/WFC3	4	2.7	40	54.87
	HST/ACS	4	3.5	50	51.02
	Gaia	0.7	60	59	1.38
Euclid has similar ratios as Theia	JWST/NIRCAM	25	2.2	70	40.50
(need to check negligible Euclid jitter)	Euclid/VIS	1.0	45	100	4.94
	Rubin/LSST	35	210	200	0.03
	Xuntian	4	63	80	0.40
	Roman/WFI	4.5	32	110	2.63
	Theia	0.5	30	64	9.10
	HWO/UVIS	100	2.5	17.3	0.48

Assume 20% of free time for astrometric science, i.e. ~7000 hours Aim for 700 hours per target. Do 10 targets: e.g. 3 dwarfs; 3 hypervelocity stars; 4 globular clusters

Let the worksop begin!

Gary Mamon (IAP), Introduction & Theia, 11 Sept. 2024