

Microarcsecond Astrometric Observatory

Université Grenoble Alpes (UGA) / CNRS atoire des Sciences de l'Univers de Grenoble (OSUG) for Planetology and Astrophysics of Grenoble (IPAG)

With the contributions of M. Lizzana, A. Léger, T. Lépine (IOGS), F. Pancher, S. Soler, R. Goullioud (JPL)

Workshop on « A future space mission with very-high precision astrometry » - Paris 11-13 September 2024

ng the Limits of Astrometry: **Advances and Scientific Prospects**

Fabien Malbet

Astrometry : oldest branch of astronomy

Pushing the Limits of Astrometry

Astrometry precision through the ages

Pushing the Limits of Astrometry

Principle of Theia : relative and precise differential astrometry

- The science target is at the center of the FOV
- \checkmark We measure the offset angles between the target object (in black) and the reference stars (other stars in **red** and **blue**)
- ✓ The single measurement is repeated several times over the mission lifetime to reach the required accuracy on the target motion
- The detector calibration is done using interferometric modulated Young's fringes

Pushing the Limits of Astrometry

Astrometry: parallax, proper motion and reflex motion

Pushing the Limits of Astrometry

Unwin et al. (2008) ; Malbet et al. (2012)

Theia's main science based on high precision astrometry

Open 6% Exoplanets 6% glob. clusters 4% stars

- Faint star mode - Bright star mode

Pushing the Limits of Astrometry

Two main observing modes:

Exoplanets discovery space

Mass vs Semi-Major Axis Diagram (from exoplanet.eu)

Pushing the Limit

J24 - Paris 11-13 Sep 2024 7

Exoplanets primary goal : Earth-mass planets in HZ in the vicinity of the Sun

Pushing the Limits of Astrometry

Complete census of exo-Earths, superEarths and mini-Neptune (M< 5 M_Earth) orbiting our 50 nearest Solar-type stars (d<10pc)

Theia instrumental concept

Specifications:

Diffraction-limited 0.5° FOV ~ 30,000 x 30,000 pixels \leq 1 billion pixels

Proposed implementation (M7)

Pushing the Limits of Astrometry

But new large CMOS detectors with smaller pixels !

Fig. 14. A huge area, $203 \text{ mm} \times 179 \text{ mm}$, 1.8 Billion pixels CIS (Left: A photograph of the exposure shot map placement and the sensor fabricated on 12 inch; Right: the corresponding wafer image.) Zhu et al. (2016)

> Pixels of ~4µm = array of 12 cm x 12 cm, (ie. 30k x 30k detector) can be manufactured on a wafer of 12" (300mm)

Detector calibration: laboratory results

Distance between stars A and B (mean removed) vs CCD displacement

Best results so far:

IPAG/CNES: 6 10⁻⁵ pixels (Crouzier et al. 2016) JPL/VESTA: 3 10⁻⁵ pixels (Shao et al. 2023)

Telescope calibration : using reference stars to monitor the distortion

Distortion can be corrected by fitting the transformation (Sky -> Detector) as calculated by Ray-tracing (Zemax) by a 2D polynomial

Detector

Integrating sphere

GIGAPYX 4600 8320 x 5436 Pixel : 4,4µm pitch

Pushing the Limits of Astrometry

Ongoing test benches at IPAG

Source

Contribution of the different errors

V	10	11	12	13	14	15	16
Nb of V ref stars	1,7	5,2	11,7	26,5	60	127	270
Cumulated Nb of (V'≤V) ref stars	1,7	6,9	18,6	45,1	105	232	502
σ_{ph} (µas)	1,8	2,9	4,5	7,1	10,3	15	23,7
σ _{det} (μas)	4,2	4,2	4,2	4,2	4,2	4,2	4,2
σ _{Gaia} (µas)	30	30	30	30	43	69	107
OBarycenter_ v (μas)	23	13,3	9	6	5,7	6,3	6,7
Orbarycenter_V'≤V (μas)	23,2	11,5	7,1	4,25	3,82	3,83	4,01

Pushing the Limits of Astrometry

The Gaia barycentric position b(t) is described by the following linear model :

$$\vec{b}(t) = \vec{b}_{\rm ep} + (t - t_{\rm ep})\vec{v}$$

$$\sigma_{\text{GAIA}} \begin{bmatrix} \vec{b}_{\text{ep}} + (t - t_{\text{ep}}) \vec{v} \end{bmatrix}$$

$$\sigma_{\text{ph}} = 0.42 \quad \frac{f\lambda}{D} \quad \frac{1}{\sqrt{N_i}}$$

$$\sigma_{\text{det}} = 2.10^{-5} \text{px}$$

$$\sigma_{Barycenter} = \frac{1}{N} \sqrt{\Sigma_{\text{ref}V \le V}} \quad \sigma_{T}$$

Theia mission profile

- ESA-led, ESA-operated mission with consortium funded payload (this is the normal type of ESA mission)
- Submitted for the **ESA M7 call** as an Ariane 6.02 launch
- Spacecraft dry mass with margin: 1063 kg. Total launch Mass: 1325 kg

Launch and Early Operations (~days)	L2 Transfer and commissioning (6 months)	Nominal Theia Science Operations (4 years)	Decommissioning
--	---	---	-----------------

Launch date	No constraints, allowing launch date in 2037	
Orbit	Large Lissajous in L2	
Lifetime	 4 years of nominal science operations Tecnical operations: 6 months orbit transfer plus commisioning and 1 month decomissioning 	
Concept	Single spacecraft, single telescope in the PLM, sing the focal plane, metrological monitoring of PLM	
Communication architecture	75 Mbps, 4h/day	

Pushing the Limits of Astrometry

Workshop Astrometry 2024 - Paris 11-13 Sep 2024 14

Thal

What about HWO wide field imager ?

Habitable World Observatory parameters

- Wavelength : UV, visible et IR
- Diameter between 6.5 and 8 m
- Launch foreseen for ~2040
- PSF ~ $\lambda/D = 14$ mas, focal length ~130 m
- exo-Earth signature @ 10pc : 0.3 µas Nyquist => signature ~ 5e-5 pixels
- Field of view 2'x3' (TBC)
- Detector size : 20 000 x 30 000 px ~ 1 Gpx
- $m_{target} \sim 6$; $m_{ref} \leq 20$ to get ~100 ref stars
- Exposure time reduced by 100 / Thea

Pushing the Limits of Astrometry

Conclusion and perspectives

- One of Theia most challenging science objectives is to identify planets down to the vicinity of the Sun (d \leq 15 pc)
- Pointed differential astrometry allows the number of exposures to be increased compared to global astrometry allowing to reach sub-microarcsecond accuracy
- lab test benches.
- stability requirements
- How to cope with the Gaia error

Pushing the Limits of Astrometry

Earth mass (M \leq 5 M_Earth) exoplanets in the habitable zone of Solar-type stars in the

• Technical challenges are the focal plane array and mitigation of the optical distortion of the telescope: new detectors and new calibration strategy are under investigation with

• Frequent calibrations ($\tau_{exposure} \sim 0.1 \text{ s}$) with Gaia data reduces considerably telescope

