

An Optical Interferometer on the Moon: Concept and Astrometric Science

Gerard van Belle (Lowell Observatory)

If you are designing space observatories, and not considering the moon ...

If you are designing space observatories, and not considering the moon ...

Your mission design trade space is incomplete

Lunar Surface Access

What is MoonLITE?

LITE = Lunar InTerferometry Explorer

- A NASA Astrophysics Pioneers proposal, reviewed cycle 2022-2023
- A two-element, 100 meter Michelson interferometer
- CLPS-delivered to lunar surface
- Capable of V=17, for objects 0.1-1.6mas in size, measure 0.1-5.0% sizes

100 meters

Emphasis on simplicity: one deployment step

Given lunar surface stability, hosting by lander, resources can be focused on the experiment itself

Lester (2006)

"The only thing the moon has to offer astronomy is

dust

and gravity"

(slightly paraphrased)

Dust?

- Nasty, nasty stuff
 - Astronauts exhibited
 'black lung' like
 symptoms
- Unweathered glass shards, sticky
- 'Levitates' above
 surface at sunrise, sunset

Park+ 2006

NASA Clementine, 1994

Dust: LUT on board Chang'e-3 Lander UV telescope with years of operations (2015 - 2018+) For sunrise & sunset, a shutter aperture was closed Dust not a problem

Gravity

It's not a bug, it's a feature

- Eg. Surveyor 3, Apollo 12: 180m baseline, stable relative position for the past 50 years
- Nearly perfect for large optical interferometers
- Formation flying is unsolved, expensive
- Gravity makes stationkeeping trivial

Gravity

Greatly simplifies pointing

- Stable reaction mass
- Solved' for orbital platforms, but expensive and buggy – Eg. HST reaction wheels, Kepler, IUE, etc.
- Also means one has an absolute reference frame for astrometry

Long Coherence Times

- No atmosphere
 - No atmospheric coherence time limit
 - Need to be mindful of instrumental coherence time
- A 2" aperture has greater sensitivity than an 8m VLTI aperture after first second of integration; 300+ sec possible
- Free vacuum \rightarrow clean beam propagation, no vacuum machinery

Stable Surface

Incorrectly assessed in ESA interferometry report (Bely 1996, "Kilometric Baseline Space Interferometry") as problematic Apollo seismometer data indicates <20nm vibrational background amplitude excursions on week+ timescales (Mendell 1998)

Access

Need a ride?

Lunar Surface

NASA Commercial Lunar Payload Services (CLPS) Landers

Hosted payloads to the lunar surface, with rover
Allowable under NASA Astrophysics Pioneers

NASA Commercial Lunar Payload Services (CLPS) Landers

Landed – South Pacific RIP Astrobotic Peregrine

Hosted payloads to the lunar surface, with rover
Allowable under NASA Astrophysics Pioneers

NASA Commercial Lunar Payload Services (CLPS) Landers

IM-I Launched Feb 15, Landed Feb 22

2-3 more CLPS flights this year

NASA Pioneers: the Loophole

NASA Pioneers have typically been cubesats / smallsats

Pandora

- Transit spectroscopy
- ESPA class smallsat,
 PI Elisa Quintana
- Landolt
 - Absolute flux calibration
 - I 2U cubesat,
 PI Peter Plavchan

Pioneers can request a CLPS ride

The Pioneers CLPS Box

• \$20M cap

50 kg, 200 W, 300kbps Daytime operations only

MoonLITE **Simple** Deployment

- Instrument compatible with all landing latitude, longitudes
- Outboard station is loaded on rover before launch
- Fiber connection from both outboard / inboard stations

- No free space scattered light
- Inboard station is equidistant (optically) from combiner
- Fiber beam relay eliminates beam steering alignment, enables daytime operations without extensive baffling

Yutu-2 (Chang'e-4) on surface

Sky Coverage

- 100 m baseline, 3 m of delay line range
- East-West orientation to baseline
 - Slight 'kink' to orientation can tune region of extended HA coverage

NB. Hours of observing time are 28× slower than hours of RA

latitude of -20°

(all other latitudes allowable)

Plot for a notional landing

Enabled Science

- $m_v < 17.1, \theta > 110\mu as sizes$
- Late M-dwarfs / BDs
- Exoplanet host multiplicity
- YSO diameters / disks
- AGN cores

Spacetime foam limits

Late M-dwarfs / Brown dwarfs

Direct diameters for known -1.0-1.5 targets Guides modeling of convection, -2.0equation of state -2.5 og L (L_o) In southern hemisphere -3.0 II M6.5V-M9.5V dwarfs -3.52 L-dwarfs and I T-dwarf -4.0additional 13 M5V-M6V dwarfs -4.5similar number of N. hemisphere

Spacetime Foam Models

- 'Granularity' of spacetime at the Planck scale (10⁻³⁵m) can lead to decoherence in propagated light (according to some theories)
- MoonLITE can place new limits on Planck scale & spacetime foam models
- Observations come as part of AGN program

Guest Observer Program

20% of available observing time

- Avenue for further innovation with these unique capabilities
- GO program to be run thru NExScl

	Lunar Day 1		Lunar Day 2	
Topic	Alloc.	Frac.	Alloc.	Frac.
	[hrs]	[%]	[hrs]	[%]
Low Mass Stars	50	10	60	10
& BDs	00	15	00	10
Stellar Binarity	50	19	60	19
YSOs	50	19	60	19
AGNs	50	19	60	19
QSOs/Spacefoam	10	4	14	4
Guest Observer	53	20	70	20
Total Science Time	263		324	
Engineering	37		20	
Time $(\S4.5.3)$	51		20	
Lander/Rover	5/		10	
Startup $(\S4.5.3)$	04		10	
Total Time	354	•••	354	

Status

Proposal was declined

- Re-submission encouraged
- Progress with building opEDU with internal funds
- Aim to test opEDU in lab and then *on-sky* with telescopes available at Lowell

Fiber relay tests

Astrometric Detection of Exoplanets

- $I M_{F} @ I AU, I M_{S}: 0.3 \mu as$
- Space Interferometry Mission (SIM)
 - ▶ 6m baseline
- Differential astromeric

single-measurement precision

(not end-of-mission):

0.6 μas for V<7

- SIM: 6 Earth-like planets
- This needs to be done in preparation for HWO, and for more than just six exo-Earths \rightarrow aim for 0.1 µas

Son of MoonLITE: Lunar Astrometry

- Much longer baseline than SIM
 - Dual-beam like GRAVITY, Keck
- 85% of the ~150 HWO targets are
 <1.25mas
- Fringe tracking V²>15%
 - NIR 290m baseline (VIS 80m baseline)
 - Still do science in VIS
- Baseline is 48× greater than SIM-Lite's
 6m
 - Tolerances are 48× relaxed
 - Or 8× relaxed for 0.1 μas precision

Delay Error Tolerances for Astrometry

- For SIM, delay error of 30pm on 6m baseline \rightarrow MoonLITE 0.24nm for a 290m baseline
 - Includes tolerance adjustment for 0.6 μ as to 0.1 μ as

- I.0nm is routinely done with ground-based facilities
- Moon's surface is a 'fixed' local reference
- Main challenge: need lots of range relative to orbital platform

Aperture Size

- 0.20m apertures
- Frame time: Is for NIR FTK, 10s for VIS SCI channels
 - ▶ V < 10, K < 9
- Account for multiply-folded delay line (~30 reflections)
- All other assumptions 'non-heroic'
 - QE, read noise, reflectivity, warm optics, beam train WFE

[А	В	С	D
	1	Parameter	Units	K-band	V-band
	2	wavelength	um	2.22	0.5
	3	aperture 1 size	m	0.20	0.2
	4	aperture 1 strehl		0.90	0.8
	5	num split		2	
	6	aperture 2 size	m	0.20	0.2
	7	aperture 2 strehl		0.90	0.8
	8	num split 2		2	
	9	integration time	S	1.0	10
	10	read noise	e rms	1	
	11	optics temperature	K	290	29
	12	object V^2		0.15	0.00
	14	reflections		40	۷
	15	Reflectivity per mirror		0.985	0.98
	16	optics emissivity		0.45	0.4
	17	throughput to detector		0.49	0.4
	18	detector qe		0.7	0
	19	etendue	I^2	1	
	20	Nneighbors		2	
	21				
	22		magnitu	9.07	10.1
	23		SNR>	10.00	10.0

	E
	Notes
5	K-band (fringe tracking), V-band (science)
0	
5	aggregate WFE
2	Two-way split for nearest-neighbor FTK
0	as above
5	as above
2	as above
0	
1	As appropriate for detector system
0	Ambient temperature
2	
0	30 for folded DL, 10 for BC
5	
5	After 40 reflections at 0.985
6	40 reflections at 0.985, Strehl injection
7	
1	
2	
0	
8	
U	

Astrometric Baseline Error

- Shao & Colavita 1992
- For bright(-ish) fiducial star references, V<10 gives 100% sky coverage at 0.12° star-to-star
 - △DL ~ 430mm at ZA~45°
- For 290m, baseline endpoint error requirement of < ~67nm</p>
 - Well above the ambient background amplitude of 22nm

Potential of long-baseline infrared interferometry for narrow-angle astrometry

M. Shao and M.M. Colavita

Compelling Motivation

- Still simple with a small number of small apertures
 - Slightly more apertures than MoonLITE (3 or 4), slightly larger (200 mm)
 - Challenge: much more delay range needed
- Can do SIM exoplanet science, better than SIM
 - Increased baseline greatly relaxes engineering tolerances
 - Possible within the scope of a MIDEX?
- HWO (& LIFE) precursor science
 - Planet masses are essential for atmospheric retrieval

Artemis-enabled Stellar Imager NIAC Study

AeSI: Dense Imaging array in the UV

- Operating as short as Lyman-α (1216Å)
 - Coatings are a challenge
- I 5 to 30 apertures, each ~I meter
- Visible FTK

What is MoonLITE?

- LITE = Lunar InTerferometry Explorer
- A NASA Astrophysics Pioneers proposal
- A two-element, 100 meter Michelson interferometer
- CLPS-delivered to lunar surface
- Capable of V=17, for objects 0.1-1.6 mas in size, measure 0.1-5.0% sizes
- First of a family of lunar observatories

"If we pull this off, we'll eat like kings."

backup slides

Sensitivity Error Budget

		All		1
		elen	nents	
	Target flux	Wavefront quality	Mirror reflectivity	2
%	Photon noise	Surfaces: $< \lambda/20$	>98.5%	3

Active Galactic Nuclei

- Investigate AGN at scales in the visible, comparable to ALMA and radio
- Investigate jet structures and/or binarity (right)
- Can approach the "Final parsec problem" in the visible
- I2+ objects for detailed morphology,
 I2+ for core object size & binarity

Lunar Libration

- 'Nodding' of the face of the Moon as it orbits Earth
- Comes out of the engineering data at the ~I mas level
- Can constrain the size, density, and state of the lunar core and lower mantle

Remarkable Opportunity

- MoonLITE delivers elements of a SMEX- and MIDEXlevel science case in an Astrophysics Pioneers package
- Leverages existing technology of ground-based interferometry, and investments in space-based prototypes
 - Demonstrates system-level flight ops of optical interferometry
- Builds on CLPS opportunity
 - A pathfinder for a family of facilities on the moon