

On your astrometric journey, don't forget your spectrograph ...

D. Katz

Observatoire de Paris - LIRA on behalf of the Meudon-Gaia spectroscopy group

- Hipparcos (1989-1993) : 118 218 stars
 - no spectrograph on-board \rightarrow vast ground-based observation effort with CORAVEL
 - catalogue + 10 years: ~15% stars observed (13 500 F-G dwarfs Nordström+04 ; 6 500 K-M giants Famaey+05)
- Gaia (2014-2025) : 1.5 billion stars
 - Radial Velocity Spectrometer (RVS)

Was it a good idea to include a spectrograph on-board Gaia ?

Artist's view of a recent successful astrometric satellite with a spectrograph on-board

Largest radial velocity catalogue

Gaia DR3

bservatoire

• 34 millions stars

GEPI

- Full sky and "homogeneous" measures
- Multi-epochs

Gaia DR4 ~ 80 millions stars Gaia DR5 ~ 100 - 150 millions stars

LAMOST DR9 LR \sim 10 millions stars

Disc perturbation

Antoja, Helmi, Romero-Gomez et al., 2018, Nature, 561, 360

Large number of stars in the solar neighbourhood \rightarrow enhance the pattern visibility

Disc/Bulge/Bar dynamics 8 Radial motion wrt. Galactic centre \rightarrow red outward / blue inward 6 5 Sun GC y (kpc) /R (km s⁻ -6-8 -510 5 Gaia collaboration, Drimmel et al., 2023, A&A, 674, 37

Gaia DR3

- 2×10^{6} stars R < 4 kpc / 27 x 10^{6} R > 4 kpc
- \rightarrow detailed 3D view: radial, azimuthal and vertical

Gaia-RVS Galactic science return \rightarrow large sample / full sky magnitude limited sample

What about the next mission ?

No universal answer \rightarrow depending on the science case

On-board spectrograph

GEPI

oservatoire

- \rightarrow Large number of sources / large sky area
- \rightarrow Gaia-RVS: 14 millions spectra/day no comparable ground-based facility (in 2045 ?) \rightarrow explore new designs / technologies ?)
 - \rightarrow Synergy with ground-based spectrographs \rightarrow e.g., abundances, fainter targets
 - \rightarrow Gaia-NIR
- Multi-object ground-based spectrographs
 - \rightarrow List of targets / moderate sky area (list of Dwarfs gal. / Globular Clusters)

 \rightarrow Theia

Potential gain of an on-board spectrograph for a Gaia-NIR-like mission

- Larger sample (full sky/homogeneous) \rightarrow less extinction and/or fainter magnitude
- Longer time baseline \rightarrow long period variability (for stars in common with Gaia)
- Different wavelength range \rightarrow new/complementary spectral information
- (Possibly) more precise measures

Anticipated complexity : crowding

Gaia DR3 V_R completeness map (Gal. coord)

GEPI

oservatoire

 \rightarrow Global 90 % / disc 70-80% / bulge densest areas < 30%

- \rightarrow upgrade of deblending algorithm planned for DR5
- Crowding will increase with number of sources
- Preparatory studies
 - → hardware / on-board software (windowing-sampling strategy)
 - \rightarrow software (ground segment)

Other preparatory studies

Define a strategy to obtain the stellar atmospheric parameters (APs)

- Required to select the template to derive the $V_{\mbox{\tiny R}}$
- Gaia : large fraction of APs provided by Bp / Rp spectra
- Future : on-board (spectro-)photometry

Other classical caracteristics

resolving power

oservatoire

• wavelength range

GEPI

- limiting magnitude
- filter properties
- throughput
- noise budget
- sampling

...

windowing strategy

- V_R performance
- crowding
- SNR, other parameters
- telemetry

Conclusion

- A spectrograph would enhance the science return of a deep full sky astrometric mission
- Some specific complexities may require preparatory studies