The Precision Frontier of Dark Matter Constraints - from Direct Acceleration Measurements

Sukanya Chakrabarti (UAH)

Extreme precision radial velocity (EPRV) : J. Wright, P. Chang, A. Quillen, P. Craig, J.Territo, E. D'Onghia, K. Johnston, R. de Rosa, K. Rhode, D. Huber, E. Nielsen, J. Wagner Pulsar timing: P. Chang, M. Lam, S. Vigeland, A. Quillen, T. Donlon, L. Widrow Eclipse timing: D. Stevens, J. Wright, R. Rafikov, P. Chang, T. Beatty, D. Huber, T. Maccarone, S.Parsons, V. Dhillon + HiPERCAM team Acceleration ladder: P. Craig, R. Sanderson, F. Nikhatar SIDM/CDM constraints: A. Arora, R. Sanderson + FIRE team Angular accelerations: L. Addy

The dynamic Milky Way

Xu et al. 2015; Widrow et al. 2012

Why direct measurements of the Galactic acceleration?

Traditional method: estimate accelerations. True acceleration in interacting Galaxy may be different

Helmi et al 2018; Belokurov et al 2018

The dynamic Galaxy

Milky Way interaction with Antlia2 : Chakrabarti et al 2019; Chakrabarti & Blitz 2009

Craig, Chakrabarti et al., 2021

- Extreme precision radial velocity measurements (Chakrabarti et al. 2020)
- 2. Pulsar timing (Chakrabarti et al. 2021, Donlon et al., 2024)
- 3. Eclipse timing (Chakrabarti et al. 2022)

From phase-space (x,v) descriptors to acceleration measurements from extreme-precision time-series observations (x,dv/dt) :

Levine, Blitz & Heiles 2006

Measured BIG accelerations

Ghez et al.++, Genzel et al. $++$

UCLA Galactic center

Stellar mass black hole from *Gaia* DR3

Chakrabarti, Simon, Craig et al. 2023 (see also El-Badry et al. 2023)

Outline: "real-time" Galactic dynamics

- High precision RV observations to measure the Galactic acceleration : requires \sim 10 cm/s precision (these accelerations << Galactic center accelerations)
- Pulsar timing measurements: the Oort limit & the local dark matter density : requires precision on $P_b \sim$ 10⁻¹³ s⁻¹ ·
- Eclipse timing measurements: requires precision on eclipse mid-point time of \sim 0.1s over decade baseline
- Angular accelerations requires ~tens of nanoarcsecond precision (in prep) to constrain Galactic potential

Acceleration profiles in static potentials

Chakrabarti, Wright, Chang, Quillen, Craig, Territo, D'Onghia, Johnston, de Rosa, Rhode & Nielsen 2020

Acceleration profiles in interacting simulations

Chakrabarti et al. (2020) - dwarf galaxy orbits from Gaia proper motions

Antlia 2

Sgr dwarf

Extreme-precision radial velocity observations

- **External** : Stellar binaries & planets
- and fainter, low-jitter dwarfs.

Contaminants to the Galactic signal:

Wright & Robertson 2017; Silverwood & Easther (2019)

• **Internal** - stellar jitter : sub-giants as compromise between bright stars

External contaminants - population synthesis model

Chakrabarti et al. 2020 : low-mass, long-period planets are a contaminant but their contribution to the Galactic signal is very small. Can reject null hypothesis that signal is due to stars with planets at high confidence.

Finding the quietest stars

ESPRESSO spectra (PI: Chakrabarti)

LOOK, MY LAD, I KNOW A DEAD PARROT WHEN I SEE ONE AND I'M LOOKING AT ONE

ARV from mean (m/s) 2 0 -2

Galactic acceleration from pulsar timing

- Temporal stability of pulsars rivals atomic clocks, a Galactic GPS system?
- Binary millisecond pulsars & change in *orbital* period: Galactic accelerometers.

Credit: "Joeri van Leeuwen"

Basic setup

$$
\dot{P}_b^{obs} = \dot{P}_b^{Gal} \; +
$$

$$
\dot{P}_b^{Shk}=\frac{I}{\tau}
$$

Shlovskii effect : apparent orbital change due to pulsar's transverse motion (Damour & Taylor 1991)

Exclude sources in globular clusters, use only sources with proper motions and parallaxes (Chakrabarti, Chang, Lam, Vigeland & Quillen, 2021)

$$
\dot{P}_b^{Shk} + \dot{P}_b^{GR}
$$

$$
\frac{b\mu^2 * d}{c^2}
$$

A simple example

$$
\Phi(r,z)=\Phi(r)+\Phi(z)
$$

$$
\Phi_r = \begin{cases} V_{LSR}^2 \ln \left(\frac{r}{R_{\odot}} \right) & \text{for } \beta = 0 \\ \frac{V_{LSR}^2}{2\beta} \left(\frac{r}{R_{\odot}} \right)^{2\beta} & \text{for } \beta \neq 0. \end{cases}
$$

$$
\Phi(z) = \frac{1}{2}\alpha_1 z_g^2
$$

$$
\nu^2 = \left. \frac{d^2 \Phi_z(z)}{dz^2} \right|_{z=0} = 4\pi G \rho_0 - 2\beta \Omega_{\odot}^2
$$

$$
\beta=0: \ \alpha_1=4\pi G\rho_0
$$

Chakrabarti et al. 2021

Best-fit parameters & Oort limit from pulsar timing

Chakrabarti et al. 2021 (our local dark matter density superimposed on Reid 2014 figure)

Oort limit (total midplane density)

$$
0.08^{0.05}_{-0.02} M_{\odot}/{\rm pc}^3
$$

With baryon density from Bienyame et al. 2015:

 $\rho_{DM} = 0.0034^{0.05}_{-0.02} M_{\odot}/{\rm pc}^3$

• Oblateness traces disk

Expanded pulsar timing sample

Donlon, Chakrabarti, Widrow, Lam, Chang & Quillen 2024 (total of 26 pulsars, with improved uncertainties).

Constraint on rotation curve (-2 +/- 5 km/s/ kpc) & Oort constants $(A = 15.4 +/- 2.6$ km/s/ kpc , $B = -13.1 + (-2.6 \text{ km/s/kpc})$, comparable with Gaia values.

Beyond a smooth model

Future work — from smooth accelerations to measuring "jerks" in the acceleration

Extreme precision RV sample ESPRESSO (PI: Chakrabarti, with Rob de Rosa, Jack Wagner, Jason Wright et al.).

Cold Dark Matter

Self-interacting DM Warm Dark Matter

Bullock & Boylan-Kolchin 2017

Less dense cores

Fewer substructures

Eclipse timing

www.eso.org

- Measure Galactic acceleration from shift in eclipse mid-point time over decade baseline \sim 0.1s.
- Requires very high (space-based) photometric precision
- It's been about a decade since Kepler!

 $\Delta t_{c,Gal} = \frac{\dot{P}_{b,Gal}}{P_b}T^2$

Contaminants to the Galactic signal

 $\dot{P}_b^{obs} = \dot{P}_b^{Gal} + \dot{P}_b^{Shk} + \dot{P}_b^{GR} + \dot{P}_b^{\text{tidal}} + \dot{P}_b^{\text{quad/rot}} + \dot{P}_b^{\text{quad/tidal}} + \dot{P}_b^{\text{pl}}$

Chakrabarti, Stevens, Wright, Rafikov, Chang, Beatty & Huber 2022 (main-sequence EBs with HST: 2024 onwards)

Accelerometers - ongoing observing campaigns

Synergy between precision tests of dark matter & tests of GR - acceleration measurements can help with precision tests of GR: Galactic potential largest uncertainty in tests of GR (PSR B1913+16) (Weisberg & Huang 2016)

EPRV = extreme precision radial velocity EBs = eclipsing binaries DWDs = double white dwarfs

From line-of-sight to angular accelerations

Addy, Chakrabarti, et al., in prep

Vector fields in spherically symmetric and razor-thin disks

Addy et al., in prep

$\Delta \mu_b$ over 10 years in GalaMWPotential2022 Total potential Baryons component DM component 3 2 $\arcsec(yr)$ $(10^{-9}$ 0 $\Delta\!\mu_b$ -2 -3 $I = 0^\circ$ $d = 2$ kpc -4 -90 -135 -270 45 -45 -180 -225 90 0 $b(°)$

• Probing the shape of the potential - Addy et al., in prep - note the zero points (in vertical edge on circle)

Probing the misalignment of the baryons and DM

• Addy et al., in prep

2021

2024

2024

~2026

2022-2023 **NANOGrav 11 yr data set (2018) Galactic accelerations measured with 14 binary pulsars**

ESPRESSO EPRV survey

Recon spectra completed. Monitoring phase begun

NANOGrav 15 yr data set Total of 26 pulsars, evidence for disequilibrium

> **Eclipse timing of EBs with HST & DWDs with HiPERCAM**

The precision frontier - the next few years

Precision Lab for Dark Matter: Summary

- First determination of Galactic parameters from acceleration measurements, which can inform direct detection experiments for dark matter:
- 1. Mid-plane density and dark matter density close to but lower than modern estimates
- 2. Oblateness of Galactic potential constrained by pulsar timing
- 3. Expanded pulsar timing sample slope of rotation curve and Oort constants are constrained
- 4. Larger pulsar timing sample shows clear disequilibrium
- EPRV survey (Fall 2021 onwards) **pathfinder for ELTs**

Combination of EPRV measurements, pulsar timing and eclipse timing, and precision astrometry : dark matter substructure