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Future measurements of the nature of dark matter with 
strong lensing
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Overview

uBackground: Using strong lensing to test 
models of dark matter

uThe future: How high precision astrometry can 
help us

2



If we could see dark matter…

Dark matter ‘halo’ – self-gravitating 
dark matter structure

Galaxy - gas+stars

Dark matter ‘halo’ ~100x 
more extended than 
galaxy stars

Millenium Simulation, Springel et al. 2005

Galaxy Image Credit; ESO/NASA
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Different dark matter models produce different dark matter halos

4

Properties of WDM haloes 5

Figure 2. Images of our haloes at redshift z = 0. The panels show CDM-W7 (top), m2.3, m2.0, m1.6, and m1.4 (left to right, then
top to bottom). Image intensity indicates projected squared dark matter density and hue density-weighted mean velocity dispersion
(Springel et al. 2008a). Each panel is 1.5Mpc on a side.
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Goal: Detecting halos 
in the dark regime

6

6 Strigari et al.

Fig. 4.— The mass within 0.6 kpc versus the maximum circular
velocity for the mass ranges of Via Lactea subhalos corresponding
to the population of satellites we study.

10% by the finite numerical resolution.
We define subhalos in Via Lactea to be the self-bound

halos that lie within the radius R200 = 389 kpc, where
R200 is defined to enclose an average density 200 times
the mean matter density. We note that in comparing
to the observed MW dwarf population, we could have
conservatively chosen subhalos that are restricted to lie
within the same radius as the most distant MW dSph
(250 kpc). We find that this choice has a negligible effect
on our conclusions – it reduces the count of small halos
by ∼ 10%.

In Figure 4, we show how M0.6 relates to the more
familiar quantity Vmax in Via Lactea subhalos. We note
that the relationship between subhalo M0.6 and Vmax will
be sensitive to the power spectrum shape and normaliza-
tion, as well as the nature of dark matter (Bullock et al.
2001; Zentner & Bullock 2003). The relationship shown
is only valid for the Via Lactea cosmology, but serves as
a useful reference for this comparison.

Given likelihood functions for the dSph M0.6 values,
we are now in position to determine the M0.6 mass func-
tion for Milky Way (MW) satellites and compare this to
the corresponding mass function in Via Lactea. For both
the observations and the simulation, we count the num-
ber of systems in four mass bins from 4 × 106 < M0.6 <
4× 108 M!. This mass range is chosen to span the M0.6

values allowed by the likelihood functions for the MW
satellites. We assume that the two non-dSph satellites,
the LMC and SMC, belong in the highest mass bin, cor-
responding to M0.6 > 108 M! (Harris & Zaritsky 2006;
van der Marel et al. 2002).

In Figure 5 we show resulting mass functions for MW
satellites (solid) and for Via Lactea subhalos (dashed,
with Poisson error-bars). For the MW satellites, the cen-
tral values correspond to the median number of galaxies
per bin, which are obtained from the maximum values
of the respective likelihood functions. The error-bars
on the satellite points are set by the upper and lower
configurations that occur with a probability of > 10−3

after drawing 1000 realizations from the respective like-
lihood functions. As seen in Figure 5, the predicted dark

Fig. 5.— The M0.6 mass function of Milky Way satellites and
dark subhalos in the Via Lactea simulation. The red (short-dashed)
curve is the total subhalo mass function from the simulation. The
black (solid) curve is the median of the observed satellite mass
function. The error-bars on the observed mass function represent
the upper and lower limits on the number of configurations that
occur with a probability of > 10−3.

subhalo mass function rises as ∼ M−2
0.6 while the visi-

ble MW satellite mass function is relatively flat. The
lowest mass bin (M0.6 ∼ 9 × 106M!) always contains 1
visible galaxy (Sextans). The second-to-lowest mass bin
(M0.6 ∼ 2.5×107M!) contains between 2 and 4 satellites
(Carina, Sculptor, and Leo II). The fact that these two
lowest bins are not consistent with zero galaxies has im-
portant implications for the Stoehr et al. (2002) solution
to the MSP: specifically, it implies that the 11 well-known
MW satellites do not reside in subhalos that resemble the
11 most massive subhalos in Via Lactea.

To further emphasize this point, we see from Figure 5
that the mass of the 11th most massive subhalo in Via
Lactea is 4 × 107 M!. From the likelihood functions in
Figure 1, Sextans, Carina, Leo II, and Sculptor must
have values of M0.6 less than 4 × 107 M! at 99% c.l.,
implying a negligible probability that all of these dSphs
reside in halos with M0.6 > 4 × 107 M!.

Using the M0.6 mass function of MW satellites, we
can test other CDM-based solutions to the MSP. Two
models of interest are based on reionization suppres-
sion (Bullock et al. 2000; Moore et al. 2006) and on there
being a characteristic halo mass scale prior to subhalo
accretion (Diemand et al. 2007). To roughly represent
these models, we focus on two subsamples of Via Lactea
subhalos: the earliest forming (EF) halos, and the largest
mass halos before they were accreted (LBA) into the
host halo. As described in Diemand et al. (2007), the
LBA sample is defined to be the 10 subhalos that had
the highest Vmax value throughout their entire history.
These systems all had Vmax > 37.3 kms−1 at some point
in their history. The EF sample consists of the 10 sub-
halos with Vmax > 16.2 kms−1 (the limit of atomic cool-
ing) at z = 9.6. The Kravtsov et al. (2004) model would
correspond to a selection intermediate between EF and
LBA. In Figure 6 we show the observed mass function of
MW satellites (solid, squares) along with the EF (dotted,

Credit: Strigari 2008

too many predicted DES and PS1 satellites; however, our
results are consistent with s = 0 dexRlog at 95%
confidence.

8. The power-law index of the galaxy–halo size relation is
constrained to lie between 0.5 and 1.45 at 68%
confidence. For shallower power-law slopes, satellite
sizes do not change appreciably as a function of halo size,
which results in a worse joint fit to the observed absolute
magnitude and surface brightness distribution. We note
that the posterior widens when our Gaussian prior on n is
relaxed.

7.5. Properties of Halos that Host the Faintest Satellites

We now explore the properties of the lowest-mass halos
inferred to host MW satellites. The left panel of Figure 6 shows
the galaxy occupation fraction derived from our statistical
inference, where uncertainties are estimated by drawing from
our fiducial posterior. By sampling from our fiducial posterior,
we infer that halos with a peak virial mass below ´ M2.5 108

and peak circular velocity below -19 km s 1 host at least one of
the faintest observed satellites. To convert these into maximally
conservative upper limits, we account for the uncertainty in
MW host halo mass using the procedure described in
Appendix A.1, which yields limits on the minimum halo mass
and peak circular velocity of < ´ M3.2 10min

8 and
< -V 21 km speak,min

1 at 95% confidence. Furthermore, we
predict that the faintest observed satellite inhabits a halo with

= ´ M1.5 10peak
8 , on average.61

These results improve upon the minimum halo mass
constraint derived from classical and SDSS satellites (Nadler
et al. 2019b) by a factor of 2, and they are consistent with the
constraints reported in Jethwa et al. (2018). Moreover, these
upper limits are not in significant tension with the expected
atomic cooling limit of » -V 20 km speak

1, contrary to recent

studies based on the radial MW satellite distribution (e.g.,
Graus et al. 2019) and consistent with the findings in Bose et al.
(2019).
We caution that the median galaxy occupation fraction

shown in Figure 6 is driven by the assumed functional form in
Equation (3) and is therefore arbitrary. Although the functional
form in Equation (3) is consistent with results from
hydrodynamic simulations for   M10peak

9 , this particular
functional form is not required to fit the DES and PS1
luminosity functions. Rather, we have evidence that fgal>50%
above a peak virial mass of ~ M108 . To verify that the
assumed form of the galaxy occupation fraction does not
impact our constraints, we also test a binned model in which
we fit for50 and a corresponding 90% occupation mass. We
find that the resulting 50% and 90% occupation constraints are
consistent with those inferred from our fiducial analysis.
A wide range of galaxy occupation fractions have been

reported in hydrodynamic simulations, with some placing50
as high as ~ M109 (Sawala et al. 2016b; Fitts et al. 2018).
However, recent hydrodynamic simulations run at higher
resolution result in efficient galaxy formation in significantly
lower-mass halos, and some claim that all halos down to the
resolution limit consistently host star particles (Wheeler et al.
2019). In addition, simulations of galaxy formation at early pre-
reionization epochs show that stellar systems form in halos
with masses as low as ~ M107 (e.g., see Figure 13 in Côté
et al. 2018 for a compilation of recent simulation results). Most
recently, high-resolution simulations of high-redshift galaxy
formation that include the effects of spatially and temporally
inhomogeneous reionization find ~ M1050

8 (Katz et al.
2019).
Our galaxy occupation fraction constraint implies that

models with > M1050
8 are in significant tension with

the observed MW satellite population, as long as MW satellite
formation is representative of galaxy formation at this halo
mass scale, on average. This assumption may not be true if the
reionization history of the MW’s Lagrangian volume differs
from the average reionization history of an MW-mass halo

Figure 6. Left panel: fraction of halos that host galaxies, inferred from our fit to the DES and PS1 satellite populations. The solid line shows the median inferred
galaxy occupation fraction, and dark (light) shaded contours represent 68% (95%) confidence intervals. The resolution limit of our simulations is indicated by the
dashed vertical line. Right panel: SMHM relation inferred from our fit to the DES and PS1 satellite populations. An extrapolation of the mean SMHM relation derived
from more luminous field galaxies is shown in gray (Behroozi et al. 2013a). Stars illustrate the mean of the predictedpeak range corresponding each observed DES
and PS1 satellite, and top ticks indicate the corresponding present-day virial masses of the halos that host these systems.

61 The faintest observed satellite in our analysis, Cetus II, is detected by DES
with MV=0.02 mag (Drlica-Wagner et al. 2015; Table C1).
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Dark matter measurements with strong 
gravitational lensing
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Signal of a perturbation in an unresolved source

T.Treu: Flux ratio anomalies and the substructure problem 3

Figure 1. The substructure problem. In simulations (top, from Kravtsov 2010), galaxies and clusters
are self-similar and should have the same amount of satellites. In reality, this is not observed: galaxies
have many fewer (luminous) satellites than expected based on dark matter substructure. Does this mean
they are dark, or that they do not exist? Answering this question is the goal of this program.

Figure 2. HST-F160W images of the targets taken from the CASTLES database, sorted by RA.

T.Treu: Flux ratio anomalies and the substructure problem 4

Figure 3. Signal-to-noise ratio maps for the proposed experiment: The top row shows the expected
S/N maps obtained by rescaling the total line flux by the flux ratios as measured in the continuum from
HST. The bottom row shows the expected S/N maps obtained by rescaling the total line flux by the flux
ratios predicted by smooth models without substructure (see Table 1). The difference is apparent by
eye. All simulations have been performed using the OSIRIS ETC developed by David Law assuming
exposure times of 10800s (0810), 7200s (for 0924 and 1138), a3600s (for 1413 and 1422). The S/N
ratio scale shown is 0-50 for 0810, 0924 and 1138 and 0-150 for 1413 and 1422. The field of view
shown is the OSIRIS field of view for 0.0500 pixels in the appropriate narrow band filter.

Figure 4. Left Mid-IR Subaru image of
1422; note how A and B are blended, while D
is undetected (Chiba et al. 2005). Our experi-
ment will detect D and resolve all four images
(see Figure 3).Right: Mid-IR image of 1413
(MacLeod et al. 2009).

Best 1 halo model fitObserved lens
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3.2 Effective Lensing Potential

Before proceeding to more complicated galaxy lens models, it is useful to develop the formalism
a little further. Let us define a scalar potential ψ("θ) which is the appropriately scaled, projected
Newtonian potential of the lens,

ψ("θ) =
Dds

DdDs

2

c2

∫

Φ(Dd
"θ, z) dz . (48)

The derivatives of ψ with respect to "θ have convenient properties. The gradient of ψ with respect
to θ is the deflection angle,

"∇θψ = Dd
"∇ξψ =

2

c2

Dds

Ds

∫

"∇⊥Φ dz = "α , (49)

while the Laplacian is proportional to the surface-mass density Σ,

∇2
θψ =

2

c2

DdDds

Ds

∫

∇2
ξΦ dz =

2

c2

DdDds

Ds
· 4πG Σ = 2

Σ("θ)

Σcr
≡ 2κ("θ) , (50)

where Poisson’s equation has been used to relate the Laplacian of Φ to the mass density. The
surface mass density scaled with its critical value Σcr is called the convergence κ("θ). Since ψ
satisfies the two-dimensional Poisson equation ∇2

θψ = 2κ, the effective lensing potential can be
written in terms of κ

ψ("θ) =
1

π

∫

κ("θ′) ln |"θ − "θ′| d2θ′ . (51)

As mentioned earlier, the deflection angle is the gradient of ψ, hence

"α("θ) = "∇ψ =
1

π

∫

κ("θ′)
"θ − "θ′

|"θ − "θ′|2
d2θ′ , (52)

which is equivalent to eq. (10) if we account for the definition of Σcr given in eq. (17).
The local properties of the lens mapping are described by its Jacobian matrix A,

A ≡
∂"β

∂"θ
=

(

δij −
∂αi("θ)

∂θj

)

=

(

δij −
∂2ψ("θ)

∂θi∂θj

)

= M−1 . (53)

As we have indicated, A is nothing but the inverse of the magnification tensor M. The matrix
A is therefore also called the inverse magnification tensor. The local solid-angle distortion due to
the lens is given by the determinant of A. A solid-angle element δβ2 of the source is mapped to
the solid-angle element of the image δθ2, and so the magnification is given by

δθ2

δβ2
= detM =

1

detA
. (54)

This expression is the appropriate generalization of eq. (26) when there is no symmetry.
Equation (53) shows that the matrix of second partial derivatives of the potential ψ (the

Hessian matrix of ψ) describes the deviation of the lens mapping from the identity mapping. For
convenience, we introduce the abbreviation

∂2ψ

∂θi∂θj
≡ ψij . (55)

Since the Laplacian of ψ is twice the convergence, we have

κ =
1

2
(ψ11 + ψ22) =

1

2
tr ψij . (56)
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Signal of a perturbation in an unresolved source

T.Treu: Flux ratio anomalies and the substructure problem 3

Figure 1. The substructure problem. In simulations (top, from Kravtsov 2010), galaxies and clusters
are self-similar and should have the same amount of satellites. In reality, this is not observed: galaxies
have many fewer (luminous) satellites than expected based on dark matter substructure. Does this mean
they are dark, or that they do not exist? Answering this question is the goal of this program.

Figure 2. HST-F160W images of the targets taken from the CASTLES database, sorted by RA.

T.Treu: Flux ratio anomalies and the substructure problem 4

Figure 3. Signal-to-noise ratio maps for the proposed experiment: The top row shows the expected
S/N maps obtained by rescaling the total line flux by the flux ratios as measured in the continuum from
HST. The bottom row shows the expected S/N maps obtained by rescaling the total line flux by the flux
ratios predicted by smooth models without substructure (see Table 1). The difference is apparent by
eye. All simulations have been performed using the OSIRIS ETC developed by David Law assuming
exposure times of 10800s (0810), 7200s (for 0924 and 1138), a3600s (for 1413 and 1422). The S/N
ratio scale shown is 0-50 for 0810, 0924 and 1138 and 0-150 for 1413 and 1422. The field of view
shown is the OSIRIS field of view for 0.0500 pixels in the appropriate narrow band filter.

Figure 4. Left Mid-IR Subaru image of
1422; note how A and B are blended, while D
is undetected (Chiba et al. 2005). Our experi-
ment will detect D and resolve all four images
(see Figure 3).Right: Mid-IR image of 1413
(MacLeod et al. 2009).

Best 1 halo model fitObserved lens

9

4 A. J. Shajib et al.

Table 1. Observation information and references for the lens systems.

System name Observation date
Total exposure time

Reference(seconds)
F160W F814W F475X

PS J0147+4630 2017 Sept 13 2196.9 1348.0 1332.0 Berghea et al. (2017)
SDSS J0248+1913 2017 Sept 5 2196.9 1428.0 994.0 Ostrovski et al. 2018b (in preparation), Delchambre et al. (2018)
ATLAS J0259-1635 2017 Sept 7 2196.9 1428.0 994.0 Schechter et al. (2018)
DES J0405-3308 2017 Sept 6 2196.9 1428.0 1042.0 Anguita et al. (2018)
DES J0408-5354 2018 Jan 17 2196.9 1428.0 1348.0 Lin et al. (2017); Diehl et al. (2017); Agnello et al. (2017b)
DES J0420-4037 2017 Nov 23 2196.9 1428.0 1158.0 Ostrovski et al. 2018b (in preparation)
PS J0630-1201 2017 Oct 5 2196.9 1428.0 980.0 Ostrovski et al. (2018); Lemon et al. (2018)
SDSS J1251+2935 2018 Apr 26 2196.9 1428.0 1010.0 Kayo et al. (2007)
SDSS J1433+6007 2018 May 4 2196.9 1428.0 1504.0 Agnello et al. (2018a)
PS J1606-2333 2017 Sept 1 2196.9 1428.0 994.0 Lemon et al. (2018)
DES J2038-4008 2017 Aug 29 2196.9 1428.0 1158.0 Agnello et al. (2017a)
WISE J2344-3056 2017 Sept 9 2196.9 1428.0 1042.0 Schechter et al. (2017)

Figure 1. Comparison between the observed (first, third and fifth columns) and reconstructed (second, fourth and sixth columns)
strong-lens systems. The three HST bands: F160W, F814W, and F475X are used in the red, green, and blue channels, respectively, to
create the red-green-blue (RGB) images. Horizontal white lines for each system are rulers showing 1 arcsec. The relative intensities of
the bands have been adjusted for each lens system for clear visualisation of the features in the system.

2.2.5 DES J0408-5354

This system was discovered from the DES Year 1 data (Lin
et al. 2017; Diehl et al. 2017; Agnello et al. 2017b). The
deflector redshift is zd = 0.597 and the quasar redshift is
zs = 2.375 (Lin et al. 2017). This is a very complex lens
system with multiple lensed arcs noticeable in addition to
the quasar images. The sources of the lensed arcs can be
components in the same source plane as the lensed quasar or

they can be at di�erent redshifts. This system has measured
time-delays between the quasar images: �tAB = �112 ± 2.1
days, �tAD = �155.5± 12.8 days, and �tBD = �42.4± 17.6 days
(Courbin et al. 2018).

2.2.6 DES J0420-4037

This lens system was discovered in DES imaging data us-
ing the morphology-independent Gaussian-mixture-model

MNRAS 000, 1–19 (2018)

strong lensing constraints on dark matter warmth 13

Figure 5. Dark matter halo e�ective multi-plane convergence maps for some of the highest-ranked realizations for the subset of quads
B1422, WGD J0405, WFI 2033, and RX J0911, each of which has flux ratios inconsistent with smooth lens models. The defintion of the
e�ective multi-plane convergence takes into account the non-linear e�ects present in multi-plane lensing, and is defined with respect to
the mean dark matter density in the universe such that some regions are underdense (blue), while other regions (specifically, dark matter
halos) are over-dense (red). The subhalo mass function normalization, line of sight normalization, halo mass and half-mode mass are
displayed for each realization. Green text/circles denote observed image positions and fluxes, while black text/crosses denote the model
positions and fluxes. The forward-model data sets fit the image positions and fluxes to within the measurement uncertainties.

c� 0000 RAS, MNRAS 000, 1–??

Inferred dark matter

strong lensing constraints on dark matter warmth 13

Figure 5. Dark matter halo e�ective multi-plane convergence maps for some of the highest-ranked realizations for the subset of quads
B1422, WGD J0405, WFI 2033, and RX J0911, each of which has flux ratios inconsistent with smooth lens models. The defintion of the
e�ective multi-plane convergence takes into account the non-linear e�ects present in multi-plane lensing, and is defined with respect to
the mean dark matter density in the universe such that some regions are underdense (blue), while other regions (specifically, dark matter
halos) are over-dense (red). The subhalo mass function normalization, line of sight normalization, halo mass and half-mode mass are
displayed for each realization. Green text/circles denote observed image positions and fluxes, while black text/crosses denote the model
positions and fluxes. The forward-model data sets fit the image positions and fluxes to within the measurement uncertainties.
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Probed Sightlines

Lens Halo
Source QSO

Field halos

Figure 1. Strong gravitational lensing provides a powerful test of CDM, as each strongly-lensed
image probes low-mass dark matter structure along the entire line of sight between the source
(typical redshifts 1.5-3) and the observer. The left-most panel shows an HST image of DESJ0405.
The right-most panel shows one realization of projected dark matter structure (including line of
sight halos and subhalos gravitationally bound to the main lens) which produces the observed
narrow-line image fluxes and positions (Gilman et al., 2020). The realization of the smooth mass
distribution of the main deflector is subtracted here for clarity. This method iterates over many
structure realizations to compare the relative likelihood of di↵erent dark matter scenarios, while
marginalizing over the uncertainties in the normalization in the halo and subhalo mass functions
and the smooth mass distribution of the main deflector. This method has been extensively tested
on simulated data and shown to accurately recover input model parameters (Gilman et al., 2019).
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Conclusively Disfavored

Strongly Disfavored

Halos are dark

Figure 2. Forecast results from this proposal. Left Panel: With 43 lenses, if halos follow a CDM
mass function, we will have conclusive evidence for the existence of halos below masses of 107M�.
This will provide a powerful confirmation of the dark matter paradigm, as such halos cannot
contain gas or stars if CDM is correct (e.g. Nadler et al., 2019). Right Panel: The purple region
shows models we can distinguish from CDM with this proposal. We will test models which di↵er
from CDM only in the regime where the majority of halos are dark, for example GUT scale sterile
neutrinos which produce a 3.55 keV X-Ray line represented by the gray region (Abazajian &
Kusenko, 2019). The blue-hatched region shows the area ruled out by Milky Way satellites (Nadler
et al., 2019), while the purple dashed line shows the current best limit (Gilman et al., 2020).
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With enough lenses we can statistically distinguish these scenarios

10

Properties of WDM haloes 5

Figure 2. Images of our haloes at redshift z = 0. The panels show CDM-W7 (top), m2.3, m2.0, m1.6, and m1.4 (left to right, then
top to bottom). Image intensity indicates projected squared dark matter density and hue density-weighted mean velocity dispersion
(Springel et al. 2008a). Each panel is 1.5Mpc on a side.
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Figure 2. Images of our haloes at redshift z = 0. The panels show CDM-W7 (top), m2.3, m2.0, m1.6, and m1.4 (left to right, then
top to bottom). Image intensity indicates projected squared dark matter density and hue density-weighted mean velocity dispersion
(Springel et al. 2008a). Each panel is 1.5Mpc on a side.
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Cold Dark Matter e.g. WIMP Warm Dark Matter – e.g. Sterile Neutrino

Credit: Lovell et al. 2014



Comparison of flux ratios with predictions from full 
cosmological dark matter predictions

11

u The mass function of halos bound 
to the main lens

u Effects of tidal stripping and 
disruption

u The spatial distribution of halos 
bound to the main lens

u The mass function of halos outside 
of the main lens

u The mass-concentration relation 

u Unknown finite source size

Line of sight halos Subhalos

Gilman et al 2019, 2020



All software is open source and publicly available 
on github

u Lenstronomy: All data analysis and 
gravitational lensing calculations. (Birrer
and Amara 2018, Birrer et al. 2021)

u PyHalo: Generates populations of dark 
matter halos and profiles along the line 
of sight and in the main lens. (Gilman et 
al. 2022)

12



Many dark matter models tested

u SIDM with resonance (Gilman et 
al. 2022) 

u Fuzzy dark matter (Laroche et al. 
2023)

u Primordial power spectrum 
(Gilman et al. 2022)

u Primordial black hole dark 
matter (Dike et al. 2022)

u Four different sterile neutrino 
models (Zelko et al. 2022)

13

Dike et al. 2022
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FIG. 5. A possible realization of projected mass in dark matter field halos and subhalos in CDM (top left). Each other
panel shows the same population of halos, but with a fraction of core-collapsed objects implemented according to the collapse
probabilities shown in Figure 4. The color scale represents fluctuations of the projected mass around the average. Black lines
show the critical curve, near where highly magnified lensed images appear. The semi-major axis is ⇠ 1 arcsecond. Halos along
the line of sight appear warped and distorted in this representation. The visible deformations of the critical curve illustrate
the e�cient lensing properties of collapsed halos.

probability that meets these criteria

Pc (m, z,�V ) =
1

2
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1 + tanh
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(7)
The collapse probability for field halos follows a similar
distribution, replacing tsub and ssub with tfield and sfield.
We predict the fraction of collapsed halos in a mass range
between ma and mb, fa/b (z,�V ), by integrating over the
halo mass function dN/dm

fa/b (z,�V ) =
1

hNi

Z mb

ma

Pc (m, z,�V )
dN

dm
dm (8)

where hNi =
Rmb

ma
(dN/dm) dm. For a narrow range of

masses near m ⇠ ma, we can approximate fa/b by sim-
ply evaluating Equation 7 at m to express the collapse
fraction as a continuous function of halo mass.

Figure 4 shows the fraction of core-collapsed subha-
los as a function of halo mass, assuming �sub = 0.4 and
�field = 350, and ssub = 0.5 Gyr. Our model predicts

peaks in the fraction of collapsed halos associated with
peaks in the scattering cross section. The �V / v�1 be-
havior of the repulsive cross section (Model 1) causes
most subhalos less massive than 108 M� to collapse,
while the resonant enhancement of the cross section in
Model 2 near 20 km s�1 causes nearly all of subhalos
in the mass the range 5 ⇥ 106M� � 5 ⇥ 107M� to core
collapse. The multiple resonances in Models 3 and 4 pro-
duce bimodal distributions in the fraction of collapsed
halos as a function of mass. For the value �field = 350
used to create the figure, which roughly corresponds to
the predicted timescale for core collapse in field halos
from gravothermal fluid models with elastic scattering
[66, 71, 73], a negligible fraction of field halos collapse.

We assume an SIDM model that does not alter the
linear matter power spectrum [e.g. 34, 78], so we rely on
halo density profiles to distinguish SIDM from CDM[79].
Prior to and during the early stages of collapse SIDM
halos have cores, but the cores have a negligible impact
on the magnification cross section [36], so we model halos

Gilman et al. 2022



Results from 14
lenses
JWST+HST+Keck

14

JWST WDM 13

Figure 7. Posterior probability distribution for the DM model parameters "hm and ⌃sub. The data favors models which yield high amounts of low-mass structure
over those that do not. We rule out a half-mode mass greater than 107.6M� (posterior odds 10:1) corresponding to a WDM particle mass of 6.1 keV.

mass fraction measured from galacticus when the pyHalo tidal
stripping model is applied to a population of subhalos. This yields a
bound mass fraction which is consistent with not only galacticus
but also a range of N-Body simulations (Fiacconi et al. 2016; Griffen
et al. 2016; Gao et al. 2012) for halos at this mass. Nadler et al. (2021a)
showed that combining luminous satellite galaxies of the Milky Way
could provide a constraint on ⌃sub, and that a combination of gravi-
tational lensing and luminous satellite counts can provide a stronger
constraint on a turnover in the halo mass function than either method
on its own. We will incorporate such constraints in a future paper,

when we infer the properties of dark matter for the whole sample of
lenses.

The model for the suppression of the warm dark matter halo mass
function implements the most recent calibration by Lovell (2020).
The suppression term (Equation 4) in this model has a logarithmic
slope at < < <hm of -0.8, relative to the -1.3 logarithmic slope of
mass function suppression presented by Lovell et al. (2014) that was
used in previous studies (Gilman et al. 2020a; Hsueh et al. 2020).
For a given <hm, the updated model predicts more low-mass halos

MNRAS 000, 1–20 (0000)

Log 10 half mode mass

<107.6 (2 σ)

Keeley, Nierenberg, et al. 2024

JWST: 9 of 31 Lenses GO-2046 (PI 
Nierenberg)
HST: GO 15177, 13732 (PI Nierenberg)



Comparison 
with other 
studies
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CDM Predicts 
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Properties of WDM haloes 5

Figure 2. Images of our haloes at redshift z = 0. The panels show CDM-W7 (top), m2.3, m2.0, m1.6, and m1.4 (left to right, then
top to bottom). Image intensity indicates projected squared dark matter density and hue density-weighted mean velocity dispersion
(Springel et al. 2008a). Each panel is 1.5Mpc on a side.
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Figure 2. Images of our haloes at redshift z = 0. The panels show CDM-W7 (top), m2.3, m2.0, m1.6, and m1.4 (left to right, then
top to bottom). Image intensity indicates projected squared dark matter density and hue density-weighted mean velocity dispersion
(Springel et al. 2008a). Each panel is 1.5Mpc on a side.
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Results from full sample of 31 JWST lenses 
coming soon…
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Many dark matter models tested

u SIDM with resonance (Gilman et 
al. 2022) 

u Fuzzy dark matter (Laroche et al. 
2023)

u Primordial power spectrum 
(Gilman et al. 2022)

u Primordial black hole dark 
matter (Dike et al. 2022)

u Four different sterile neutrino 
models (Zelko et al. 2022)

17

Dike et al. 2022
4

FIG. 5. A possible realization of projected mass in dark matter field halos and subhalos in CDM (top left). Each other
panel shows the same population of halos, but with a fraction of core-collapsed objects implemented according to the collapse
probabilities shown in Figure 4. The color scale represents fluctuations of the projected mass around the average. Black lines
show the critical curve, near where highly magnified lensed images appear. The semi-major axis is ⇠ 1 arcsecond. Halos along
the line of sight appear warped and distorted in this representation. The visible deformations of the critical curve illustrate
the e�cient lensing properties of collapsed halos.
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The collapse probability for field halos follows a similar
distribution, replacing tsub and ssub with tfield and sfield.
We predict the fraction of collapsed halos in a mass range
between ma and mb, fa/b (z,�V ), by integrating over the
halo mass function dN/dm

fa/b (z,�V ) =
1

hNi

Z mb

ma

Pc (m, z,�V )
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dm (8)

where hNi =
Rmb

ma
(dN/dm) dm. For a narrow range of

masses near m ⇠ ma, we can approximate fa/b by sim-
ply evaluating Equation 7 at m to express the collapse
fraction as a continuous function of halo mass.

Figure 4 shows the fraction of core-collapsed subha-
los as a function of halo mass, assuming �sub = 0.4 and
�field = 350, and ssub = 0.5 Gyr. Our model predicts

peaks in the fraction of collapsed halos associated with
peaks in the scattering cross section. The �V / v�1 be-
havior of the repulsive cross section (Model 1) causes
most subhalos less massive than 108 M� to collapse,
while the resonant enhancement of the cross section in
Model 2 near 20 km s�1 causes nearly all of subhalos
in the mass the range 5 ⇥ 106M� � 5 ⇥ 107M� to core
collapse. The multiple resonances in Models 3 and 4 pro-
duce bimodal distributions in the fraction of collapsed
halos as a function of mass. For the value �field = 350
used to create the figure, which roughly corresponds to
the predicted timescale for core collapse in field halos
from gravothermal fluid models with elastic scattering
[66, 71, 73], a negligible fraction of field halos collapse.

We assume an SIDM model that does not alter the
linear matter power spectrum [e.g. 34, 78], so we rely on
halo density profiles to distinguish SIDM from CDM[79].
Prior to and during the early stages of collapse SIDM
halos have cores, but the cores have a negligible impact
on the magnification cross section [36], so we model halos
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Thousands of quadruply imaged quasars will be 
detectable in LSST Euclid and Roman

u ~200 easily accessible in the next 5 years with 
current facilities on Keck

u Next generation instruments/observatories 
will let us measure dark matter in thousands.

Lensed quasars and supernovae 2583

Figure 2. The evolution of SN rates for Type Ia (lower line) and core-
collapse (i.e. the sum of Ib/c, IIP, IIL and IIn; upper line) SNe adopted
in this paper. See text for details of the model. Filled squares are recent
measurements of SN Ia rates from Hardin et al. (2000), Pain et al. (2002),
Dahlen et al. (2004), Blanc et al. (2004), Neill et al. (2006), Poznanski
et al. (2007), Kuznetsova et al. (2008), Botticella et al. (2008), Dilday et al.
(2008), Horesh et al. (2008) and Dahlen et al. (2008), whereas open squares
are recent measurements of core-collapse SN rates from Dahlen et al. (2004),
Botticella et al. (2008) and Bazin et al. (2009). Errors indicate 1σ statistical
errors, and do not include any systematic errors.

is uncertain at the factor of ∼2 level, suggesting that our predicted
numbers of lensed SNe will be similarly uncertain. In particular,
our model appears to slightly overpredict the core-collapse SN rate,
though it is possible that current observations may miss a fraction of
core-collapse SNe given their wide range of intrinsic luminosities.
The uncertainty should be even larger at redshift z ! 2 for Type Ia
SNe, and z ! 1 for core-collapse SNe, where no measurements of
SN rates have been obtained.

We need not only SN rates, but also the brightness distributions
of SNe in order to make predictions of the lensed SNe abundance.
In what follows the magnitude of SNe refers to the peak magnitude,
i.e. the magnitude when the SN is brightest. Again following Oda
& Totani (2005), we assume the absolute magnitudes of SNe are
Gaussian distributed (see also Yasuda & Fukugita 2010). With this
assumption the luminosity function (in terms of B-band absolute
magnitude M) can be written as

d"X

dM
= nX(z)

(1 + z)
1√

2πσX
exp

[
− (M − M∗

X)2

2σ 2
x

]
, (18)

where (M∗
Ia, M∗

Ib/c, M∗
IIP, M∗

IIL, M∗
IIn) = (−19.06, −17.64,

−16.60, –17.63, –18.75) (for h = 0.72) and (σIa, σIb/c, σIIP, σIIL,

σIIn) = (0.56, 1.39, 1.12, 0.90, 0.92) (Richardson et al. 2002). Note
that the luminosity function of SNe (equation 18) differs from that
of QSOs (equation 10) in that the former is in fact the number rate
(number per unit time). Thus the factor of (1 + z)−1 is introduced
to account for the cosmological time dilation.

We convert B-band absolute magnitudes to apparent magnitudes
in the i band by computing K-corrections using various SN template
spectra. We adopt the spectra at the peak presented by Nugent, Kim
& Perlmutter (2002) for Ia, Levan et al. (2005) for Ib/c and Gilliland,
Nugent & Phillips (1999) for IIP, IIL and IIn.

3 ST RO N G L E N S E S IN VA R I O U S S U RV E Y S

In this section, we predict the number of strongly lensed QSOs
and SNe for a selection of ongoing and planned surveys, using the
model described in detail in Section 2.

3.1 The expected number of lenses as a function of survey
depth

First, we explore how the number of lenses detected increases with
survey depth. In Fig. 3, we plot the number of lensed QSOs (in a half-
sky survey) as a function of i-band limiting magnitude ilim. The slope
of these number counts is fairly shallow, particularly at ilim ! 21,
which suggests that the survey area is much more important than the
survey depth when trying to discover many strongly lensed QSOs.
The lensing rate is ∼10−3.5, and does not depend very much on
ilim due to the conflicting effects of increasing mean QSO redshift
and decreasing magnification bias. We note that the lensing rate is
lower than observed in the Cosmic Lens All-Sky Survey (CLASS),
∼10−2.8 (Browne et al. 2003), presumably because of the quite
different magnification bias it involves (for instance, in the CLASS
the total magnification factor is used for the magnification bias).
The recent optical lens survey, the SDSS Quasar Lens Search, has
obtained a lensing rate of ∼10−3.3, which is more consistent with the
calculation above (see Inada et al. 2008). The fraction of quad lenses
decreases from ∼30 per cent for ilim = 18 to ∼10 per cent for ilim =
28, which is roughly consistent with previous calculations (Rusin
& Tegmark 2001; Huterer et al. 2005; Oguri 2007b). The small
fraction (∼10−3) of naked cusp lenses indicates that only very wide-
field surveys will be able to locate such rare image configurations.
We again note that our calculation is applicable only to galaxy-
scale lenses; naked cusp lenses are much more common at cluster
scales, where the radial density profiles of the lenses are shallower
(Oguri & Keeton 2004; Minor & Kaplinghat 2008). We also note
that our model lens galaxies are all spheroids, with correspondingly
low ellipticity. The lower mass, discy lenses, which will make up
a small minority ("20 per cent, see Section 2.1) of any survey’s

Figure 3. The expected number of lensed QSOs as a function of the
i-band limiting magnitude ilim. A fiducial survey area of # = 20 000 deg2 is
assumed. The number of non-lensed QSOs is also shown for reference. The
lower panel shows the ratio of the number of quad (four-image) or naked
cusp (three-image) lenses to the total number of lenses, as a function of ilim.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 405, 2579–2593
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The near future: hundreds of lenses with Keck 
OSIRIS

Time scale ~5 years for lenses 
discovered in Euclid+LSST.

Follow up ~6 nights per semester 
can do 250 lenses from Keck over 
the next 5 years
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multiple lenses can be analyzed simultaneously.

Goal 1.3 Impact: We will measure narrow-line flux ratios in 200 quadruply imaged quasars.
We will publish these measurements in an online catalog as well as in a GitHub repository.
These measurements will increase the lensing data available to measure the properties of dark
matter by more than an order of magnitude.

Goal 2: Measuring the physical properties of dark matter with an order of

magnitude increase in the amount of data. Our overall goal is to use the flux ratios
measured for Goal 1 to gain new insight into the nature of dark matter. We will combine the
narrow-line flux ratios we measure with the broad band imaging to constrain the smooth mass
distribution of the deflector, using the formalism our team has developed [16]. The lensed quasar
host galaxy significantly reduces model uncertainty on the mass distribution of the deflector and
directly leads to more sensitive dark matter measurements. For example, in the case of a WDM
inference for 30 lenses, this improves the limit by 0.5 dex.

For both goals, we will apply the framework we have developed and tested on simulated data,
shown to recover the correct properties of dark matter in the presence of realistic uncertainties
in the deflector macromodel including external shear, and multipole deviations from ellipticity as
well as uncertainties in the normalization of the field halo mass function and the e↵ect of tidal
stripping on subhalos. The method is described in detail in Section 2.3. In summary, it involves
simulating many realizations of dark matter halos with properties such as the mass function, spatial
distribution and tidal stripping drawn from analytic fits to simulations.

Goal 2.1: Model specific inferences Many classes of dark matter models make specific
predictions for the properties of halos. For Goal 2.1, my UC Merced team will specifically focus
on testing Warm Dark Matter, as these models represent behavior predicted by a broad range of
particle physics models, and the inferred mass function can be connected confirming the existence
of completely dark halos. We will simultaneously work with unfunded collaborators Simon Birrer,
and Daniel Gilman (see attached letters of collaboration) to use the new flux ratios to study a wide
range of other dark matter models including self-interacting dark matter [26], primordial black holes
[28] and axions [27].

This Proposal

≳ 50% of halos 
have galaxies

Milky Way 
satellites limit

Figure 4: Our measurement is sensitive
to a turnover in the halo mass function
below the limit where the majority of halos
contain detectable galaxies, but also the
mass-concentration relation of those halos.
We forecast a constraint from 200 lenses in
this proposal on a WDM like turnover of
Mhm > 106 M�, based on an extrapolation
from the forecast by Gilman et al. [23], and
our current results from Keeley et al. [18].
We will be able to measure a devi-

ation from CDM within the purple

band, well below current constraints,

and below the limit where halos are

expected to contain detectable galax-

ies.

250 lenses



How can micro-arcsecond astrometry help us?

uBetter constraints on deflector macromodel.
uHigh precision microlensing tracking.
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Macromodel-mass distribution of main lens halo and galaxy

T.Treu: Flux ratio anomalies and the substructure problem 3

Figure 1. The substructure problem. In simulations (top, from Kravtsov 2010), galaxies and clusters
are self-similar and should have the same amount of satellites. In reality, this is not observed: galaxies
have many fewer (luminous) satellites than expected based on dark matter substructure. Does this mean
they are dark, or that they do not exist? Answering this question is the goal of this program.

Figure 2. HST-F160W images of the targets taken from the CASTLES database, sorted by RA.

T.Treu: Flux ratio anomalies and the substructure problem 4

Figure 3. Signal-to-noise ratio maps for the proposed experiment: The top row shows the expected
S/N maps obtained by rescaling the total line flux by the flux ratios as measured in the continuum from
HST. The bottom row shows the expected S/N maps obtained by rescaling the total line flux by the flux
ratios predicted by smooth models without substructure (see Table 1). The difference is apparent by
eye. All simulations have been performed using the OSIRIS ETC developed by David Law assuming
exposure times of 10800s (0810), 7200s (for 0924 and 1138), a3600s (for 1413 and 1422). The S/N
ratio scale shown is 0-50 for 0810, 0924 and 1138 and 0-150 for 1413 and 1422. The field of view
shown is the OSIRIS field of view for 0.0500 pixels in the appropriate narrow band filter.

Figure 4. Left Mid-IR Subaru image of
1422; note how A and B are blended, while D
is undetected (Chiba et al. 2005). Our experi-
ment will detect D and resolve all four images
(see Figure 3).Right: Mid-IR image of 1413
(MacLeod et al. 2009).

Best 1 halo model fitObserved lens
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3.2 Effective Lensing Potential

Before proceeding to more complicated galaxy lens models, it is useful to develop the formalism
a little further. Let us define a scalar potential ψ("θ) which is the appropriately scaled, projected
Newtonian potential of the lens,

ψ("θ) =
Dds

DdDs

2

c2

∫

Φ(Dd
"θ, z) dz . (48)

The derivatives of ψ with respect to "θ have convenient properties. The gradient of ψ with respect
to θ is the deflection angle,

"∇θψ = Dd
"∇ξψ =

2

c2

Dds

Ds

∫

"∇⊥Φ dz = "α , (49)

while the Laplacian is proportional to the surface-mass density Σ,

∇2
θψ =

2

c2

DdDds

Ds

∫

∇2
ξΦ dz =

2

c2

DdDds

Ds
· 4πG Σ = 2

Σ("θ)

Σcr
≡ 2κ("θ) , (50)

where Poisson’s equation has been used to relate the Laplacian of Φ to the mass density. The
surface mass density scaled with its critical value Σcr is called the convergence κ("θ). Since ψ
satisfies the two-dimensional Poisson equation ∇2

θψ = 2κ, the effective lensing potential can be
written in terms of κ

ψ("θ) =
1

π

∫

κ("θ′) ln |"θ − "θ′| d2θ′ . (51)

As mentioned earlier, the deflection angle is the gradient of ψ, hence

"α("θ) = "∇ψ =
1

π

∫

κ("θ′)
"θ − "θ′

|"θ − "θ′|2
d2θ′ , (52)

which is equivalent to eq. (10) if we account for the definition of Σcr given in eq. (17).
The local properties of the lens mapping are described by its Jacobian matrix A,

A ≡
∂"β

∂"θ
=

(
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∂αi("θ)
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)
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= M−1 . (53)

As we have indicated, A is nothing but the inverse of the magnification tensor M. The matrix
A is therefore also called the inverse magnification tensor. The local solid-angle distortion due to
the lens is given by the determinant of A. A solid-angle element δβ2 of the source is mapped to
the solid-angle element of the image δθ2, and so the magnification is given by

δθ2

δβ2
= detM =

1

detA
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This expression is the appropriate generalization of eq. (26) when there is no symmetry.
Equation (53) shows that the matrix of second partial derivatives of the potential ψ (the

Hessian matrix of ψ) describes the deviation of the lens mapping from the identity mapping. For
convenience, we introduce the abbreviation

∂2ψ

∂θi∂θj
≡ ψij . (55)

Since the Laplacian of ψ is twice the convergence, we have

κ =
1

2
(ψ11 + ψ22) =

1

2
tr ψij . (56)
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3.2 Effective Lensing Potential

Before proceeding to more complicated galaxy lens models, it is useful to develop the formalism
a little further. Let us define a scalar potential ψ("θ) which is the appropriately scaled, projected
Newtonian potential of the lens,

ψ("θ) =
Dds

DdDs

2
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∫

Φ(Dd
"θ, z) dz . (48)

The derivatives of ψ with respect to "θ have convenient properties. The gradient of ψ with respect
to θ is the deflection angle,
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while the Laplacian is proportional to the surface-mass density Σ,
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where Poisson’s equation has been used to relate the Laplacian of Φ to the mass density. The
surface mass density scaled with its critical value Σcr is called the convergence κ("θ). Since ψ
satisfies the two-dimensional Poisson equation ∇2

θψ = 2κ, the effective lensing potential can be
written in terms of κ
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As we have indicated, A is nothing but the inverse of the magnification tensor M. The matrix
A is therefore also called the inverse magnification tensor. The local solid-angle distortion due to
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convenience, we introduce the abbreviation

∂2ψ

∂θi∂θj
≡ ψij . (55)

Since the Laplacian of ψ is twice the convergence, we have

κ =
1

2
(ψ11 + ψ22) =

1

2
tr ψij . (56)

19

Gravitational Potential



Deflector macromodel
Significant source of model uncertainty, 
can be well constrained with imaging of 
the quasar host galaxy. 
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Lensed arcs and flux ratios 15

Figure 14. Reconstructed lensed image (left), substructure convergence (center), and normalized residual map from the reconstructed imaging data of Mock 4
in the CDM ground truth sample. The top two rows depict realizations accepted based matching the image positions, flux ratios, and imaging data. The bottom
rows show examples of systems that match the flux ratios, but which we reject due to a poor fit to the imaging data. The green (black) numbers and curves show
the true (model-predicted) flux ratios and critical curves, respectively.
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8 Gilman et al.

Figure 5. The imaging data (left) and the true convergence in dark matter substructure (right) for mock lens #4. This system has flux ratios consistent with those
predicted by a smooth lens model.

Figure 6. The imaging data (left) and the true convergence in dark matter substructure (right) for mock lens #6. Several dark matter halos and line-of-sight halos
near image A impart a strong perturbation to the magnification of this image.

within O (10) factor (Fiacconi et al. 2016). Second, we create a sam-
ple of 25 lenses with a WDM ground truth with ⌃sub = 0.04 kpc�2

and <hm = 107.5"� . Both sets of mocks have the same main deflec-
tor mass models and background sources, but the image positions
and flux ratios between them differ slightly due to the different pop-
ulations of halos in the lens models.

4.2 Mass profile of the main deflectors

In this section we discuss how we create simulated main deflector
mass profiles for the mock lenses (Section 4.2.1) and how we model
the mock lenses during the inference performed on the mock datasets
(Section 4.2.2).

4.2.1 Creating mock lens mass profiles

To test the methodology discussed in Section 2 we create a sample
of 25 mock lens systems with properties broadly comparable to the
know population of such systems (Auger et al. 2010; Oguri & Mar-
shall 2010). The mocks have lens (source) redshifts in the range 0.3
- 0.9 (0.9 - 3.0). We model the main deflector galaxy as a elliptical
power-law (EPL) mass profile with an Einstein radius set to 1 arcsec
for each system, axis ratios in the range 0.50 - 0.95, and logarith-
mic mass profile slopes W drawn from a Gaussian prior N (2.0, 0.1).
We apply external shear across the main lens plane with a random
orientation and a strength Wext in the range 0.02 - 0.16.

The observed population of elliptical galaxies sometimes exhibit
deviations from ellipticity quantified in terms of multipole perturba-
tions on top of the elliptical mass profile (Bender et al. 1989; Hao

MNRAS 000, 1–26 (2024)

Simulated HST Data

Comparison with dark matter realizations

Both of these would have been accepted in the ‘positions only’ inference

Gilman, Birrer, Nierenberg, Oh (2024)

Lensed arcs and flux ratios 21

Figure 19. The joint posterior on the normalization of the subhalo mass
function ⌃sub and the half-mode mass <hm for a simulated dataset with a
WDM ground truth <hm = 107.5"� . The posterior results from flux ratio
measurement uncertainties of 1 percent. Black contours show the posterior
with a log-uniform prior on ⌃sub, and blue contours show the result of in-
corporating a Gaussian prior on ⌃sub centered on the ground truth value
of log10 ⌃sub = �1.4 with a width 0.2 dex. As in Figure 18, contours corre-
spond to 68% and 95% confidence intervals, the red crosshairs mark the input
ground truth, and the vertical bars in the <hm marginal likelihood represent
95% exclusion limits.

Figure 20. The same as Figure 19, but assuming flux ratio measurement
uncertainties of 3 percent.

sulting from applying the ray tracing methods presented by Gilman
et al. (2019), which use only the image positions and flux ratios
to constrain the lens model and substructure properties. The blue
contour in Figure 18 shows the constraints resulting from applying
the methodology presented in Section 2, in which we use the lensed
arcs, image positions, and flux ratios to constrain the lens model.
Both distributions assume a flux ratio measurement precision of 3%.
To make a direct comparison between these two approaches and eval-
uate the relative improvement, we compute the likelihood obtained
from only the image positions and flux ratios (black contours) using
the same tolerance threshold n to down-select on the flux ratio sum-
mary statistics when computing the blue likelihood, which uses all
of the available data.

In terms of confidence intervals, incorporating imaging data im-
proves the 95% exclusion level by 0.5 dex; with only image positions
and flux ratios, we find log10 <hm < 107.7"� , and log10 <hm <
107.2"� when incorporating imaging data with a log-uniform prior
on <hm 2 U (4, 10). We can also quantify the improvement gained
by incorporating imaging data in terms of relative likelihoods, which
do not depend on the prior. First, we define a region of parameter
space associated with CDM as having 4.0 < log10 <hm/"� < 4.5,
and regions of parameter space associated with WDM as bins in
log10 <hm with a width of 0.5 dex between 107"� and 109"� . We
then compute the relative likelihood between CDM and WDM as the
volume of the posterior with log10 <hm < 4.5 to the volume of the
posterior with log10 <hm in each bin.

Table 5.1.2 summarizes the inferred likelihood ratios. In the
“coldest” WDM bin with <hm in the range 107

� 107.5"� , in-
corporating constraints from the lensed arcs improves the likeli-
hood ratios punishing WDM models by a factor of 1.3. At scales
<hm 2 107.5

� 108"� , adding imaging data strengthens the likeli-
hood ratios by a factor of 2.5, eventually reaching a factor 13.1 for
<hm 2 108.5

� 109"� . The likelihood function shrinks the volume
of the posterior distribution relative to the prior volume by a factor
of 4 using only image positions and flux ratios, and by a factor of 7
using the image positions, flux ratios, and imaging data.

Figures 19 and 20 show the inference on 25 lenses created with
a WDM ground truth <hm = 107.5"� using the lensed arcs and
flux ratios. Figure 19 assumes a flux ratio measurement precision
of 1%, and Figure 20 assumes a flux ratio measurement uncertainty
of 3%. The black distribution corresponds to a log-uniform prior
on the amplitude of the subhalo mass function, and the blue results
from assuming a prior on the amplitude of the subhalo mass function
log10 ⌃sub = �1.4 ± 0.2.

Our inference method recovers the input values for these param-
eters, even after marginalizing over the main deflector mass profile
including third and fourth order multipole perturbations, the size of
the warm dust region surrounding the lensed quasar, and the lensed
quasar host galaxy light. The covariance between ⌃sub and <hm
manifests more prominently for these inferences than for the CDM
ground truth (Figure 18), but incorporating an informative prior for
the amplitude of the subhalo mass function can aid in breaking this
covariance. In practice, such a prior could come from N-body sim-
ulations or semi-analytic models (e.g. Benson 2012; Fiacconi et al.
2016; Jiang et al. 2021; Nadler et al. 2023a; Mansfield et al. 2023;
Du et al. 2024), which make increasingly robust predictions for the
number of main deflector subhalos that appear in projection near
the Einstein radius in typical host halos ⇠ 1013"� . Alternatively,
a prior on the amplitude of the subhalo mass function could come
from measurements of the halo mass function in lenses from grav-
itational imaging (e.g. Vegetti et al. 2014; Hezaveh et al. 2016; He
et al. 2022; Wagner-Carena et al. 2023). The marginal likelihood of
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The future – Macromodel constraints with 
astrometry
u Higher resolution imaging (e.g.

Habitable Worlds Observatory) yields 
better macromodel constraints

u Subhalos can introduce >10 mas
perturbations to image positions 
(current precision is ~5-10 mas), 
however large degeneracy with 
macromodel, esp. if using only point 
source positions (Chen et al. 2007)
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CAVEAT: need to be cautious 
about wavelength

The quest for the smallest structure

Keck AOHST E-ELT

109 Msun 108 Msun ?

The quest for the smallest structure
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The future II: 
Time variable 
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measure 
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in the following form is used to map the ray from the observer,
through the lens, and into the source:

~y ¼
1" c 0
0 1þ c

! "
~x" rc~x"

XN$

i¼1

mið~x" ~xiÞ
ð~x" ~xiÞ2

: ð1Þ

Here, ~x and ~y are the location of a light ray in the lens and source
plane respectively, ~xi and mi are the mass and co-ordinates of the
ith microlensing star. For the remaining terms in this expression,
rc represents the local density of smooth matter in the galaxy,
whereas c, known as the shear, encapsulates the large-scale asym-
metry in the galaxy mass distribution. The surface density of com-
pact objects (assumed to be uniform), is also used in modelling and
simulations and is given by rs. The distance scale used in lensing is
the Einstein Radius (ER), the radius of a ring produced by lensing of
a source that is directly behind a point lens in a line from lens to ob-
server. Einstein Radii are used to refer to the extent of observed
images on the sky, and are derived from the mass of the lens and
the distances to the lens and source.

2.2. Numerical approach

Clearly, Eq. (1) can also be seen as a mapping from a source
location, ~y, to a number of image (or observed) positions ~x; it is
apparent that this mapping is one-to-many, with a single source
resulting in a number of images (dependent upon the number of
microlensing masses N$). However, reversing the mapping from
the image plane back to the source is one-to-one and hence an ‘‘in-
verse ray-tracing” mechanism (Glassner, 1989) is typically em-
ployed in the study of microlensing. With this, the observer
sends out a large number of rays into the image plane. For each
ray, the deflection angle is calculated through Eq. (1) and the ray
is mapped into the source plane and collected on a grid. After all
the rays are followed, the density of rays in the binned-up map
of their source positions is directly proportional to the magnifica-
tion of a source at that location; Fig. 1 presents an example of such
a map, where light regions correspond to a high density of col-
lected rays (i.e. strong magnification) whereas dark regions corre-
spond to the opposite situation.

A deeper examination of Eq. (1) reveals that the computation-
ally intensive aspect of undertaking such ray-tracing is the sum
over the microlensing masses when calculating the deflection an-
gles; in typical simulations, there could be 105 ! 106 masses, with
the tracing of ' 1011rays required to achieve sufficient density in

the source plane. Following the seminal work by Kayser et al.
(1986), Wambsganss (1999) implemented an inverse ray-tracing
approach which has become the ‘‘industry standard”, utilizing a
tree-algorithm to ease the sum over the microlensing deflection
angles. The advent of this approach has allowed the analysis of
the magnification patterns of microlensed quasars (Wambsganss,
1992), the structure of quasar broad line emission regions (Keeton
et al., 2006; Lewis and Ibata, 2004), chromatic effects in microlen-
sing (Wambsganss and Paczynski, 1991), the nature of dark matter
in lensing galaxies (Lewis and Gil-Merino, 2006; Pooley et al.,
2009; Schechter and Wambsganss, 2002), and the effect of source
size on microlensing (Bate et al., 2008; Mortonson et al., 2005),
among others.

3. New physical challenges

Several quasar systems appear to possess anomalous flux ratios
(Blackburne et al., 2006; Eigenbrod et al., 2006; Ota et al., 2006;
Pooley et al., 2006), meaning that the observed image brightnesses
differ significantly from predictions drawn from gravitational lens
models possessing mass distributions that are smooth on galactic
scales. Two key hypotheses have been put forward to explain these
observations; either these anomalous ratios are due to millilensing
by ' 106 M( clumps of dark matter in the halo of the lensing gal-
axy (Chiba, 2002; Dalal and Kochanek, 2002; Metcalf and Madau,
2001; Mao and Schneider, 1998), or the quasars are microlensed
by stars embedded in an overall smooth dark matter distribution
(Witt et al., 1995). The former proposal is attractive as it may pro-
vide the first direct measurement of the missing substructure ex-
pected from galactic build-up in cold dark matter formation
scenarios. The latter proposal is also important, potentially probing
the fundamental nature of dark matter, as will be explained below.

The original proposal by Witt et al. (1995) considered a smooth
dark matter component which actually suppresses the image flux
for long periods, leading to the apparently anomalous flux ratios.
However, Schechter and Wambsganss (2002) questioned this
hypothesis, suggesting that the dark matter could in fact be com-
posed of substellar compact objects, and that the existence of such
a compact component could imprint itself on the resulting gravita-
tional lens statistics. In studying the microlensing hypothesis, a
number of of numerical simulations were undertaken by Schechter
and Wambsganss (2002) using the backwards ray-shooting ap-
proach, and Fig. 2 illustrates several examples of the parameters
employed. Fig. 2(a) simulates a galaxy of a few thousand stars all
of one solar mass ðM(Þ, with rs ¼ 0:475 and c ¼ 0:425. Fig. 2(b)
and 2(c) use the same parameters but two different masses for
rs: 2% of the mass is in stars of mass M(, and the rest is contained
in small compact objects, 0:01 M( in (b) and 0:001 M( objects in
(c). The final panel, Fig. 2(d), presents the case of a smooth dark
matter component ðrs ¼ 0:0095;rc ¼ 0:4655; c ¼ 0:425Þ; as
shown in Lewis and Gil-Merino (2006), when the mass of the com-
pact dark matter component is made smaller, the general scale of
caustic structure is reduced, although large-scale caustic features,
due to the presence of the solar mass stars in the simulations, re-
main. In comparing the lower two panels in Fig. 2, the large-scale
caustic structure is the same in the small compact and smooth dark
matter cases, but the smaller scale structure is quite different (in
fact, it is non-existent in the smooth matter case). Lewis and
Gil-Merino (2006) went on to show that, even though the large
scale caustic structure is similar, the presence of the small scale
caustics imprints itself on the statistical properties of the microlen-
sing, with the lower panels possessing quite different magnifica-
tion probability distributions. However, convolving these maps
with a finite source radius washes out the small scale caustic struc-
ture, and for large enough sources the convolved compact mass

Fig. 1. An example of a gravitational microlensing magnification map generated via
inverse ray tracing. The lens consists of 435 stars each of 1 solar mass ðM(Þ,
randomly distributed, with mass parameters rs ¼ 0:39; c ¼ 0:10. The viewing
window is 8 ER in width. Light shading corresponds to regions of high magnifi-
cation, whereas darker regions represent demagnification.
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Microlensing – micro-arcsecond perturbations to a 
gravitational lens

Gravitational microlensing of AGN dusty tori 5

Figure 1. Left panel: Microlensing magnification map, with 61.42 pc (1156 RE) on the side. Average surface mass density and shear take value of κ = γ =

0.4. White circles indicate sizes of tori used in this study (Rout = 3 and 10 pc). Right panel: zoom-in on the square with 12 pc on the side, from which the
light curve of microlensing event is extracted (vertical white line).

1 mμ 2.3 mμ 4.6 mμ 9.7 mμ

Figure 2. Top row: images of torus at different wavelengths, face-on view. From left to right, panels represent model images at 1, 2.3, 4.6, and 9.7 µm. All
images are given in the same, logarithmic color scale. The visible squared structure is due to the clumps which in our model are in the form of cubes. The
adopted values of torus model parameters are: optical depth τ9.7 = 5, dust distribution parameters p = 1 and q = 2, the half opening angle Θ = 50◦ ,
the relative clump size ξ = 12.5, the inner and outer radius Rin = 0.8 and Rout = 3 pc, respectively. Bottom row: microlensing magnification maps after
convolution with the corresponding tori images from the top row. Maps correspond to the region shown in the right panel of Fig. 1. For clarity, a different scale
of coloring for each map is adopted, so that the details of each image are visible.
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M. Treyer and J. Wambsganss: Astrometric microlensing of quasars 21

Fig. 1. Illustration of source position in magnification pattern/source plane (left) and corresponding microimage configuration in the image
plane, for cases κ = 0.2, κ = 0.4, κ = 0.6, and κ = 0.8 (from top to bottom) and no external shear (γ = 0.0). The center-of-light position is
marked with a plus sign. The horizonal bar indicates a length of two Einstein radii (2 RE). Note the change in scale in the right hand panels.

The relevant length scale for microlensing is the Einstein
radius in the source plane:

RE =

√
4GM

c2

DSDLS

DL
≈ 3.2 × 1016

√
M/M# h−0.5

75 cm, (1)

where “typical” lens and source redshifts of zL = 0.5 and zS =
2.0 were assumed for the expression on the right hand side (G
and c are the gravitational constant and the velocity of light,
respectively; M is the mass of the lens, DL, DS, and DLS are the
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Figure 1. The substructure problem. In simulations (top, from Kravtsov 2010), galaxies and clusters
are self-similar and should have the same amount of satellites. In reality, this is not observed: galaxies
have many fewer (luminous) satellites than expected based on dark matter substructure. Does this mean
they are dark, or that they do not exist? Answering this question is the goal of this program.

Figure 2. HST-F160W images of the targets taken from the CASTLES database, sorted by RA.

What we see 
with 100 milli-
arcsecond 
FWHM PSF
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Fig. 4. Illustration of a quasar microlensing scenario (here for lensing parameters κ = 0.6 and γ = 0.6, sidelength about 10 RE): the gray
scale indicates regions of different magnifications in the source plane. The straight vertical line marks the track of the quasar relative to the
magnification pattern. The total length of the track is 2.0 RE.

Here the quasar size R15 is parametrized in units of 1015 cm.

2.2. The special case of Q2237+0305

The quadruple quasar Q2237+0305 (Huchra et al. 1985; Irwin
et al. 1989; Wambsganss et al. 1990; Wyithe et al. 2000a,b;
Woźniak et al 2000a,b) is a very special and favorable case
and of particular interest to microlensing studies. It was the
first system in which microlensing was discovered (Irwin et al.
1989). Subsequently it received a lot of attention, both obser-
vational (Corrigan et al. 1991; Ostensen et al. 1996; Woźniak
et al 2000a,b) and theoretical (Wambsganss et al. 1990; Wyithe
et al. 2000a,b; Yonehara 2001). Due to the fact that the lensing
galaxy is so close (zG = 0.039, Huchra et al. 1985), the phys-
ical and angular Einstein radii are considerably different from
the standard case treated above:

rE,Q2237+0305 ≈ 1.6 × 1016
√

M/M# h−0.5
75 cm, (5)

θE,Q2237+0305 ≈ 7.3 × 10−6
√

M/M# h−0.5
75 arcsec. (6)

The resulting time scales (Einstein time and crossing time) are
much shorter than in almost all other multiple quasars:

tE,Q2237+0305 ≈ 8.7
√

M/M# v−1
600 h−0.5

75 years, (7)

tcross,Q2237+0305 ≈ 0.07 R15 v
−1
600 h−0.5

75 years

≈ 25 R15 v
−1
600 h−0.5

75 days. (8)

For that reason, this quadruple system is ideally suited for mi-
crolensing studies. The length, time and angular scales for the
“typical case” as well as for the special case of Q2237+0305
are summarized in Table 1.

3. The simulations

To explore astrometric microlensing for a variety of realis-
tic scenarios, we consider eight different cases, with the fol-
lowing values of the dimensionless surface mass density: κ =
0.2, 0.4, 0.6 and 0.8. Each one of these we treated both with-
out external shear (γ = 0) and with external shear equal to

Given typical lens 
and quasar relative 
velocities, the 
source centroid will 
travel ~2 micro 
arcseconds in ~10 
years
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Fig. 7. Top: three snapshots of the ensemble of microimages assuming σ = 0.16 RE. All bright microimages are plotted up to a radius of 3σ
(due to the finite resolution of the plotting routine, some of the faint microimages are represented as larger than they actually are). Left to
right: starting, middle et final positions of the track in Fig. 4, corresponding to t = 0.0, 1.0 and 2.0 tE, respectively (note the angular scale: the
microimage distribution covers about 30 θE × 40 θE!). Bottom: zoomed central regions; the respective positions of the center-of-light for the
three epochs are marked as crosses on the track of the center-of-light.

In Fig. 3, the method is illustrated for κ = 0.8 and γ = 0.8.
The top left panel shows the magnification pattern in the source
(quasar) plane with side length L = 10 θE (B configuration).
The grey scale indicates regions of different magnifications in
the source plane: the lighter the grey, the higher the magni-
fication. The large square indicates the region in the source
plane for which all source positions were evaluated. The top
right panel shows the corresponding microimage configuration
in the image plane: the white regions are the parts of the im-
age plane where light bundles appear which originated from
within the square on the left (side length is 40 θE). In other
words, it shows what a large square shaped source would look
like to the observer. The bottom panels show the same for the
smaller square region indicated in the top left panel, zoomed
eight times. The many isolated light patches indicate that mi-
croimages are spread over a very large area in the image plane.

Figure 4 shows a quasar microlensing scenario with mi-
crolensing parameters κ = 0.6 and γ = 0.6, and side length
10 θE (B configuration). The straight vertical white line marks
the track of the quasar motion relative to the magnification pat-
tern; the length of the path is 2.0 RE. For this particular track
(followed from the lowest part upwards), Fig. 5 shows from
top to bottom: the X- and Y-coordinates of the quasar relative
to the starting position (∆θX and ∆θY ) as a function of time; the
absolute value of the positional shift (|∆θ|) relative to the start-
ing position as a function of time; and the corresponding light
curve (∆m) of the quasar. The solid and dotted lines correspond
to two different values of the source size: σ = 0.04 RE (4 pixels
in B configuration) and σ = 0.16 RE (16 pixels in B configura-
tion), respectively. The track in Fig. 4 starts in a region of low
magnification which is taken as the zero point of the magnitude
scale on the lowest panel in Fig. 5.

The centroid moves along a ~10 micro-arcsecond track
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Tracking quasar image 
positions over time 
could potentially yield 
an extremely high 
precision measurement 
of the microlens
population, enabling 
novel constraints on 
primordial black hole 
dark matter.
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Clustered PBH dark matter
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Figure 3. Magnification map for image A1 of system MG0414+0534 produced by 20% of the projected mass in form of clustered
Primordial Black Holes. Insets on the right show a zoom-in comparing of the full simulation including individual BHs (upper)
and considering the clusters as a single object (lower).

baseline for no microlensing. These large high resolu-
tion maps are necessary to study simultaneously the ef-
fect of microlensing on the di↵erent sizes involved in the
structure of quasars.

3.2. Inhomogeneous spatial distributions of deflectors:

the case of clustered PBHs

We have so far considered that the deflectors are ho-
mogeneously distributed (i.e. that the statistical prop-
erties of the deflectors spatial distribution are similar
at every point). However, studies about the origin of
PBHs (an interesting astrophysical candidate to explain,
at least partially, the dark matter) suggest that they
form in clusters (e.g. Garćıa-Bellido & Clesse, 2018). In
addition, clustering introduces in the problem two spa-
tial scales: the Einstein radius of the BHs and that of
the clusters, which behave as pseudo-particles. While
the latter are homogeneously distributed in the lens
plane, the former are not. The strong inhomogeneity
may be a challenge to methods based in the calculation
of the gravitational potential from the redistribution of
the masses in a regular lattice for two scales are now
present. Figure 3 shows the magnification map of im-

age A1 of the system MG0414+0534 where 20% of the
mass surface density is in the form of clustered PBHs
of 30M�. The simulation contains 1607 clusters with a
size of 1pc, each one containing 300 PBHs (for a total of
482237 PBHs). The map is 8000⇥8000 pixels, for a total
workload of ⌦ = 4.8⇥1014. The insets on the right panel
show a zoom in of a region of the map for the case includ-
ing the individual PBHs (upper panel), and also for the
case including only the clusters as pseudo-lenses (lower
panel). The comparison clearly shows the di↵erence,
and the need of including the individual PBHs, which
can produce individual caustics that may be present in
the observed light curves, but would be absent if they
are not included in the simulations. In a forthcoming
paper on this issue (Heydenreich et al., private comm.)
we have performed simulations of this type which, for
large values of the fraction of mass in form of compact
objects, require huge number of deflectors up to 8⇥ 107

which the FMM-IPM code has been able to handle com-
fortably in much shorter execution times.

3.3. Extremely magnified stars by galaxy clusters: the

case of Earendel



Using time position variation to distinguish 
between microlensing and intrinsic variability

u Spatial variations will
depend on intrinsic
source size as well as
the population of
microlenses

u Microlensing can be 
used as a sensitive 
probe of primordial 
black hole populations

u Would need to
measure centroid in a
narrow wavelength
range
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Estimate of microlensing from 
time delay measurements alone



u Improved constriants of the large-scale mass 
distribution of the deflector

u New constraints of quasar structure

u Time variable centroid mapping could yield new 
constraints on primordial black hole dark matter

Conclusions: High precision astrometry can significantly 
improve measurements of dark matter with gravitationally 
lensed quasars
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