The SHERA Concept

Jet Propulsion Laboratory California Institute of Technology

An Astrometry Mission to Detect Earth Analogs Orbiting the Nearest Sun-like Stars

Gautam Vasisht¹

gv@jpl.nasa.gov

J. Christiansen² (PI), and the SHERA team

- Jet Propulsion Laboratory, California Institute of Technology
- NASA Exoplanet Science Institute

A Future Space Mission with Very High Precision Astrometry, IAP, Paris, Sept 11-13, 2024

© California Institute of Technology 2024. All rights reserved. Government sponsorship acknowledged. CL#24-0274.

SHERA: Searching for Habitable Exoplanets with Relative Astrometry

Landscape of Binaries and Planets:

- A healthy fraction of all nearby Sun-like stars are in binaries/multiples
- Of the 5600 planets less than 10% are found in multiple systems, and 0 of those lie the habitable zones of nearby systems
- We are lacking in knowledge about the stellar systems that make up a significant portion of potentially habitable zones

Astrometric Approach:

- Use binarity for precise relative astrometry between pairs
- Use a payload is a diffractive ~22 cm M1 in a twomirror telescope, deployed to a low Earth orbit (LEO)
- Conduct repeated observations ≥10 visual binaries over a 3-year mission to monitor separations to uas levels

Astrometric Technology:

- Develop diffractive optic PSF shaping approach and advance systems TRL on < 2 yr timescale
- Maintain aggressive development timeline to be considered for upcoming Astrophysics SMEX cycle

Objectives Trifecta: High Priority Targets, Occurrences, Binary Suppression

Science Objectives: Suppression

Test the supression of small planets in the habitable zones of binary Sun-like star systems compared to single Sun-like stars;

- Although planet formation largely predicts a reduced number of planets in binary systems at intermediate (10s-100s of au) separations, observations find conflicting results (see e.g. Figure right), and there are no constraints at habitable distances
- Constraining this would be *critical* input to planet formation theory
- Observing a certain number of stars with sensitivity to super-Earths and sub-Neptunes in their HZs, to count if small planets are suppressed in binaries

JNEXT/SHERA Technology program

- Goals: Develop SHERA components/methods to requisite TRLs
- Technology testbed with a 10 cm diameter two-mirror telescope with a diffractive M1
 - M1, M2, Filter, Sensor
 - Thermal control system
 - Data modeling and astrometry analysis
- Vacuum environment with a PIC binary star simulator to demonstrate separation measurements at the uas level

Component:	Functionality:	Performance Requirement:
Diffractive Pupil	Create a specific diffractive pattern at the telescope focal plane that will allow for astrometric measurement extraction.	This image of the pattern created by this DP should match the designed pattern to within a surface error tolerance. Must be done an a <u>Cassegrain-style mirror</u>
Sensor	Capture the diffracted image of the binary stars	Knowledge of pixel location must be known to < 0.3% of pixel pitch. Standard linearity and flat field requirements are necessary
Astrometric Vector Extraction	Process images from the TOLIMAN telescope and extract astrometric vectors	Extract the astrometric vectors at the <u>1µas level</u>

Diffractive Pupil Fabrication

At JPL's microdevices laboratory we have completed the e-beam fabrication of a 10 cm Toliman-style binary diffractive pupil on flat Zerodur (D. Wilson, M. Noyes)

- And measured it to show that final WFE meets Strehl requirements
- Proceeding to fabrication on a 10 cm curved surface with a thru-hole
- Designing a SHERA diffractive optic, suitable for a wide range of targets

Toliman-style binary DP grating pattern

DP grating flat in interferometer testing

2D Comb PSF, with a multi-level Ebeam diffractive optic

Photo: Matt Noyes, JPL

Tuthill et al. 2024, Proc. SPIE, https://doi.org/10.1117/12.3019256 Bendek et al. 2023, Proc. SPIE, https://doi.org/10.1117/12.2677828 Desdoigts et al. 2023, Proc. SPIE, <u>https://doi.org/10.1117/1.JATIS.9.2.028007</u> Langford et a. 2024, Proc. SPIE, https://doi.org/10.1117/12.3019202

Detector Calibration using Focal Plane Metrology

- Measure the position of CMOS pixels (6.5 um) to ~1E-3 pixel or better relative to a perfect grid;
- Measure the uncertainty in the flat field to similar levels
- Uses laser fringe metrology techniques (Shao et al. 2023, DOI 10.1088/1538-3873/ace3f4) Camera (left), sensor edge (right)

Figure from Shao et al., PASP,135:074502, 2023

Current calibration lightsource Photo: Insoeb Hahn

Wavefront Error, Optical Beamwalk, Filter coatings etc. Star A and Star B shear by tiny amounts on M

- In SHERA the optical footprints separate on M2 and filter by ~5-50 microns
- These are nevertheless subject to microarcsecond error arising from evolving WFE, beam-walk due S/C pointing, etc
- Filter location and coating performance is also critical

Star A and Star B shear by tiny amounts on M2 and on optical filter 0.03 1000 1500 2000 2500 3000 3500 4000 4500 5000 5000 Contribution of mid-high spatial frequencies to total error is high

inverse spatial scale (mm⁻

SHERA/JNEXT Performance budgeting and testing

Relationship between astrometry and Imaging

