

Detector Development for Future Space missions

Jesper Skottfelt (Jesper.Skottfelt@open.ac.uk)

Future Astrometry Mission Workshop, IAP, Sep 2024

5

CENTRE FOR ELECTRONIC IMAGING

Research group at the Open University, UK, specialising in CCD & CMOS R&D for Space Science

- A collaboration between Teledyne e2v and Open University
- Founded in 2004

Areas of expertise:

- Complementary metal-oxide-semiconductor (CMOS) image sensors and charge coupled devices (CCD)
- Image sensor design and customization
- Sensor characterization and calibration
- Radiation damage effects in space
- Interaction of radiation with matter, shielding
- Semiconductor physics and device simulations
- Cryogenics and vacuum
- Electronics

MAIN WORK – IMAGE SENSORS FOR SPACE MISSIONS

JUICE – JANUS camera

- Radiation and EO characterisation of CIS115 detector
- Proton, electron, gamma, heavy ions

Euclid – VIS Instrument

- Cryogenic proton irradiation of its CCD273s
- · In-orbit radiation monitoring

ATHENA – WFI instrument

 Modelling radiation backgrounds and design of graded Z-shield for the WFI X-ray camera

MAIN WORK – IMAGE SENSORS FOR SPACE MISSIONS

XGISs IRT XSIS

SMILE – Investigating the interaction of Earth's magnetosphere with the Solar wind

- Radiation damage effects in a soft X-ray imager (CCD)
- Very large CCDs
- Joint Chinese-ESA mission
- Launch in 2025

THESEUS - CMOS sensor for the Soft X-ray Imager (0.3 - 6 keV)

- Project to develop a prototype funded by ESA
- Designed at the CEI: 40 μm and 10 μm pixels, fully depleted, 40 μm thick, 2 e- noise, based on our patent
- BSI CIS221-X sensors manufactured by Te2v
- Gamma and proton irradiation campaigns underway

DETECTORS FOR ASTRONOMICAL INSTRUMENTS

- Detectors are essential for any instrument
- Often a major cost driver
- Important that detector selection/development and testing is started early
- Many detector types to choose from:
 - CCD
 - CMOS
 - MCT
 - APD
 - MKID
 - Microchannel plates
 - Superconducting nanowires
 - Many more ...
- All technologies have different pros and cons

- Gaia made use of the CCD clocking principle by transferring the charge across the device at the same speed as the stars moved across the detector
 - Time-delayed Integration (TDI)
 - Not possible with other technologies
 - Column parallel CMOS
 - TDI therefore limited to wavelengths observable with silicon (<1100)

LOW NOISE DETECTOR DEVELOPMENTS

- A lot of detector developments are currently driven by HWO requirements
 - Noise < 0.2 e-
- CCDs have well-defined noise
 - Difficult to get below 1 e-
- Skipper CCDs
 - Very long readout times
- Multi-Amplifier CCDs
 - Limited by RO circuits and power consumption
- CMOS can have sub-electron noise
 - Very low Full Well capacity
 - Noise distribution

CMOS DETECTOR DEVELOPMENTS AT CEI

- Strong expertise in semiconductor device simulations
 - Device physics and manufacturing process
 - 2D and 3D
- Pixel and sensor design in-house
 - · Layout and tape-out of test chips
 - Custom chip designs for several space missions
- 4 patent applications, one granted patent
 - High-rho CMOS (Deep depletion better red response)
 - Standard product for Teledyne e2v CIS
 - High Dynamic Range (HDR)
 - Dual sense nodes
 - Now part of CIS300 product line
 - Large Pixel design
 - Skipper CMOS
 - Skipper structure in each pixel
 - Low-noise at by multi-sampling in parallel
 - Test chip is currently being taped out

charge to voltage

conversion

Own design test chip

7

LARGE AREA CMOS DEVICE

- As part of studies for CASTOR we are testing CIS303 devices from Teledyne e2v
 - 9k x 8.6k device, 10um pixels, 2 e- noise
 - HDR, rad-hard design, (high-rho)
- CASTOR will have 3 large focal planes covering
 - 150-300 nm, 300-400nm, 400-550nm
- UV photons often stopped in "dead layer" at first few nm of detector
- Testing UV enhancement techniques
 - 2D-doping technology from JPL
 - Backside passivation using Multilayer Beam Epitaxy
 - Teledyne e2v UV-enhanced coating
 - · Low energy boron implantation
 - Black silicon technology from Aalto Uni / Elfys
 - Etching of nm-sized spikes in the surface
 - Surface passivation with Al₂O₃ using atomic layer deposition
- QE testing down to 40 nm (120 nm+ can be done in-house)

RADIATION DAMAGE

- In space there is a high flux of highly energetic particles mainly from the Sun
- These particles can damage the detector creating defects in the silicon lattice
- These defects (or traps) can cause
 - · Increased dark current
 - Image lag
 - Latch-up events
- Rigorous radiation testing is therefore necessary
 - Proton
 - Electron
 - Gamma
 - Heavy ions
- For Euclid Keep Cold testing was performed
 - · Irradiating the devices cold
 - Keeping cold for up to a year while monitoring

The Open University e

- Evaluation of the space radiation environment
- Evaluation of potential Total ionising dose (TID) and Total Non-ionising dose (TNID)
- Assessments for many different orbits LEO, GEO, HEO, L1/L2

SIMULATION OF THE RADIATION ENVIRONMENT

- Extensive experience of laboratory testing and validation at beamlines of physics processes
 - Experience at BESSY II (Germany), PSI (Switzerland), Cyclotron at the University of Birmingham, UK.
 - ESTEC Co-60 facility

SUMMARY

- Detectors are important!
- New developments take time, so important to start this work early
- A lot of detector work at the moment is driven by HWO requirement
 - Sub e- noise (< 0.2 e-)
- Different technologies are being explored
- Radiation damage effects can have large impact, especially on sub e-level
 - Rigorous testing is important
- · The CEI is keen to work with you on detector development and testing
 - Jesper.Skottfelt@open.ac.uk

THANK YOU

