Challenges

Landscape in 2020s

What comes next

Summary

Small bodies and Extreme astrometry

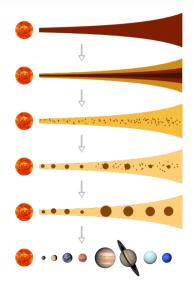
B. Carry

Lagrange, Observatoire de la Côte d'Azur

Landscape in 2<u>020s</u>

—— Remnants of our dynamical past

(Exo)planet formation


- \circ Protoplanetary disk
- Accretion of solids
- Planetesimals

Fundamental processes

- Planetary migrations
- Dynamical instability
- ▷ Solar system?

Asteroids are Relics

- No compositional evolution
- Direct witnesses

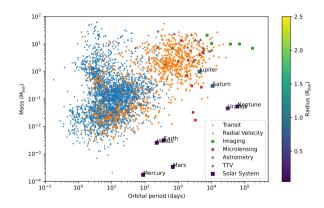
Landscape in 2020s

What comes next

Summary

—— Remnants of our dynamical past

(Exo)planet formation


- Protoplanetary disk
- Accretion of solids
- Planetesimals

Fundamental processes

- Planetary migrations
- Dynamical instability
- ▷ Solar system?

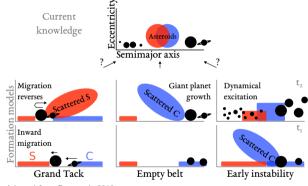
Asteroids are Relics

- No compositional evolution
- Direct witnesses

Landscape in 2020s

—— Remnants of our dynamical past

(Exo)planet formation


- Protoplanetary disk
- Accretion of solids
- Planetesimals

Fundamental processes

- Planetary migrations
- Dynamical instability
- ▷ Solar system?

Asteroids are Relics

- No compositional evolution
- Direct witnesses

Adapted from Raymond+2018

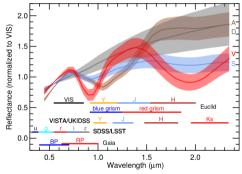

Challenges

Landscape in 2020s

What comes nex

Summary

What do we need to study?


Spoto+2018

- Discovery & Dynamics
 - Dynamical structure
 - Origins & evolution
 - Astrometry

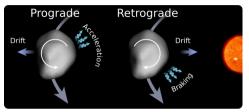
Challenges

Landscape in 2020s

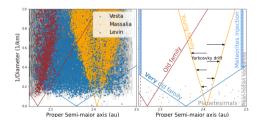
—— What do we need to study?

Carry2018

- Discovery & Dynamics
 - Dynamical structure
 - Origins & evolution
 - Astrometry


• Composition

- Location & timing of formation
- Compositional structure
- Vis-NIR spectro-photometry


Challenges

Landscape in 2020s

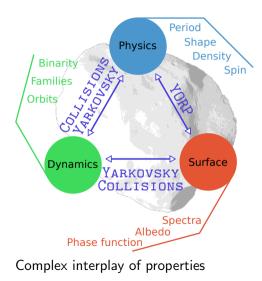
— What do we need to study?

Adapted from Bottke+2022

- Discovery & Dynamics
 - Dynamical structure
 - Origins & evolution
 - Astrometry

• Composition

- $\circ~$ Location & timing of formation
- Compositional structure
- Vis-NIR spectro-photometry
- Physical properties
 - $\circ~$ Diameter, Spin, ... \rightarrow Yarkovsky
 - Main evolutionary drivers
 - Photometric time series


Challenges

Landscape in 2020s

What comes ne>

Summary

— What do we need to study?

- Discovery & Dynamics
 - Dynamical structure
 - Origins & evolution
 - Astrometry

• Composition

- $\circ~$ Location & timing of formation
- Compositional structure
- Vis-NIR spectro-photometry
- Physical properties
 - $\circ~$ Diameter, Spin, ... \rightarrow Yarkovsky
 - Main evolutionary drivers
 - Photometric time series

Challenges

Landscape in 2020s

— Challenges for Solar System Objects

Solar System Objects (SSOs) are **THE** transients!

• Variable position

- Asteroids: 10–100 $^{\prime\prime}/h$
- 1-10 $^{\prime\prime}/h$ beyond Jupiter

Challenges

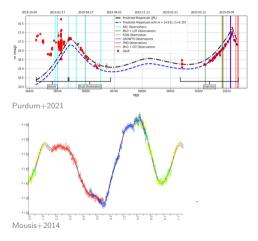
Landscape in 2020s

= Challenges for Solar System Objects

Solar System Objects (SSOs) are **THE** transients!

• Variable position

- Asteroids: 10–100 $^{\prime\prime}/h$
- 1-10 $^{\prime\prime}/h$ beyond Jupiter


• Variable magnitude

Sun-SSO-Observer

 $1{-}3$ mag / months

Irregular shape

 ${\leq}0.15$ mag / hours

Challenges

Landscape in 2020s

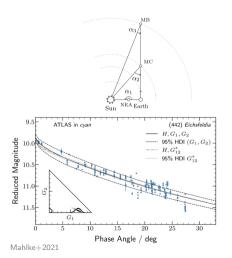
= Challenges for Solar System Objects

Solar System Objects (SSOs) are THE transients!

• Variable position

- Asteroids: 10–100 $^{\prime\prime}/h$
- 1-10 "/h beyond Jupiter

• Variable magnitude

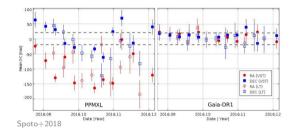

Sun-SSO-Observer

 $1{-}3$ mag / months

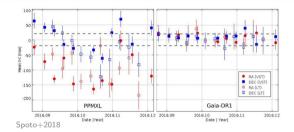
Irregular shape

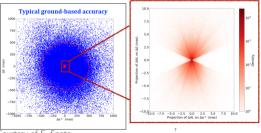
 ${\leq}0.15$ mag / hours

- Variable SED around a G2 basis
 - Function of phase
 - Wavelength dependent IR?

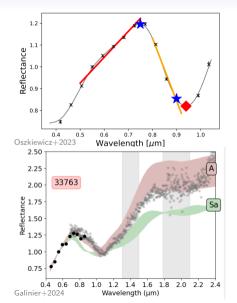


4/10 B. Carry, OCA, 2024/09/13

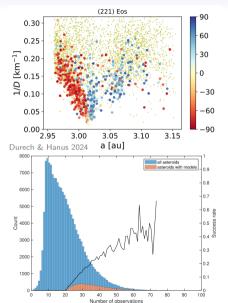

< @ >


Landscape in 2020s

- Gaia Astrometry
 - Stellar catalog
 - SSOs

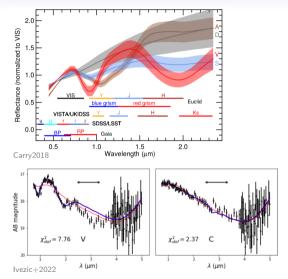

- Gaia Astrometry
 - Stellar catalog
 - SSOs

Courtesy of F. Spoto


- Gaia Astrometry
 - Stellar catalog
 - SSOs
- Gaia spectro-photometry
 - $7k \rightarrow 60k \rightarrow 150k$ spectra
 - $5\,y
 ightarrow 10\,y$ photometry

Landscape in 2020s

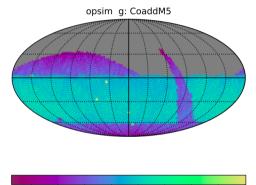
—— The landscape in 2020s for SSOs


- Gaia Astrometry
 - Stellar catalog
 - SSOs
- Gaia spectro-photometry
 - $7k \rightarrow 60k \rightarrow 150k$ spectra
 - $5\,y
 ightarrow 10\,y$ photometry

5/10 B. Carry, OCA, 2024/09/13

Summary

- Gaia Astrometry
 - Stellar catalog
 - SSOs
- Gaia spectro-photometry
 - $7k \rightarrow 60k \rightarrow 150k$ spectra
 - $5\,y
 ightarrow 10\,y$ photometry
- Euclid/SPHEREx for 10⁵ SSOs
 - 0.5–2 μm photometry
 - 0.7–5 μ m spectroscopy



Landscape in 2020s

—— The landscape in 2020s for SSOs

- Gaia Astrometry
 - Stellar catalog
 - SSOs
- Gaia spectro-photometry
 - $7k \rightarrow 60k \rightarrow 150k$ spectra
 - $5 \, y \rightarrow 10 \, y$ photometry
- Euclid/SPHEREx for 10⁵ SSOs
 - 0.5–2 μ m photometry
 - 0.7–5 μ m spectroscopy
- LSST T for tsunami
 - 5 M SSOs, 200-300 \times each
 - ugrizy filters

opsim: baseline2018a

25.6 26.0

LSST Collaboration

26.4

26.8 27.2 27.6

CoaddM5 (mag)

28.8

28.0 28.4

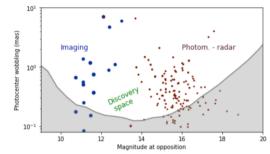
Landscape in 2020s

What comes next?

Summary

- Regular 4π sr observations will remain necessary
 - Near-Earth environment
 - Monitor activity continuum asteroid-comet
 - With associated spectro-photometry

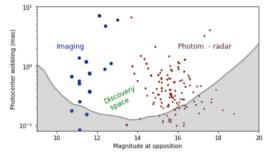
- Regular 4π sr observations will remain necessary
 - Near-Earth environment
 - Monitor activity continuum asteroid-comet
 - With associated spectro-photometry
- Case 1. Characterization of binary asteroids
 - $\circ~$ At least 15% of the population
 - Open questions on formation and evolution


- Regular 4π sr observations will remain necessary
 - Near-Earth environment
 - Monitor activity continuum asteroid-comet
 - With associated spectro-photometry
- Case 1. Characterization of binary asteroids
 - $\circ~$ At least 15% of the population
 - Open questions on formation and evolution
- Case 2. Masses from close encounters
 - Provide the density
 - $\circ~$ Insight on timing/location of formation

- Regular 4π sr observations will remain necessary
 - Near-Earth environment
 - Monitor activity continuum asteroid-comet
 - With associated spectro-photometry
- Case 1. Characterization of binary asteroids
 - $\circ~$ At least 15% of the population
 - Open questions on formation and evolution
- Case 2. Masses from close encounters
 - $\circ~$ Provide the density
 - $\circ~$ Insight on timing/location of formation
- Case 3. Direct detection of Yarkovsky drift
 - Main driver of dynamical evolution
 - Critical for chronology

= Case 1. Characterization of binary asteroids =

• Current sensus

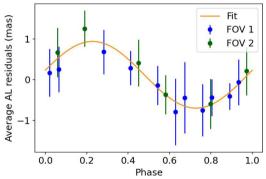

- Light curves
- Direct imaging
- Strong biases

Tanga+, ANR GaiaMoons

= Case 1. Characterization of binary asteroids

- Current sensus
 - Light curves
 - Direct imaging
 - Strong biases
- Companion \rightarrow wobbling
 - Reflex motion around barycenter
 - Photocenter-barycenter offsets
 - Binaries in GDR3! Liberato+2024

Tanga+, ANR GaiaMoons

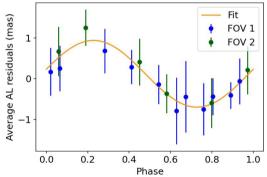


Tanga+, ANR GaiaMoons

= Case 1. Characterization of binary asteroids

- Current sensus
 - Light curves
 - Direct imaging
 - Strong biases
- Companion \rightarrow wobbling
 - Reflex motion around barycenter
 - Photocenter-barycenter offsets
 - Binaries in GDR3! Liberato+2024

Body 3457 Astrometry residuals Period fitted:46.01+-1.43 hours Amplitude=0.82+-0.01mas | SNR=1.46 p-value = 0.000%



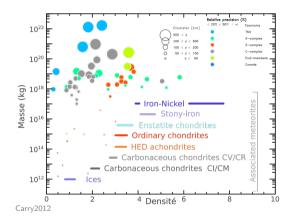
Liberato+2024

= Case 1. Characterization of binary asteroids

- Current sensus
 - Light curves
 - Direct imaging
 - Strong biases
- $\bullet \ \ \textbf{Companion} \ \rightarrow \ \textbf{wobbling}$
 - Reflex motion around barycenter
 - Photocenter-barycenter offsets
 - Binaries in GDR3! Liberato+2024
- A case for extreme astrometry
 - Regular observations (10-20)
 - Over a few periods (days)
 - At mas / sub-mas level
 - $V \in [13, 18+]$

Body 3457 Astrometry residuals Period fitted:46.01+-1.43 hours Amplitude=0.82+-0.01mas | SNR=1.46 p-value = 0.000%

Liberato+2024

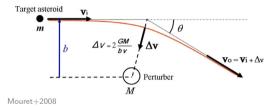

Challenges

Landscape in 2020s

What comes next?

Summary

= Case 2. Masses from close encounters

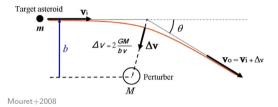

- Density is fundamental
 - Timing of formation
 - Place of formation
 - Extremely hard to measure

Landscape in 2020s

What comes next?

Summary

= Case 2. Masses from close encounters


- Density is fundamental
 - Timing of formation
 - Place of formation
 - Extremely hard to measure

• Mass from encounters

- Change of trajectory
- Mass of perturber
- Density

Landscape in 2020s

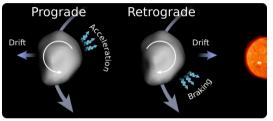
= Case 2. Masses from close encounters

- Density is fundamental
 - Timing of formation
 - Place of formation
 - Extremely hard to measure

• Mass from encounters

- Change of trajectory
- Mass of perturber
- Density
- A case for extreme astrometry
 - Before/after encounter
 - Weeks/Months (few points)
 - At mas / sub-mas level
 - V > 18

Landscape in 2020s


What comes next?

Summ<u>ary</u>

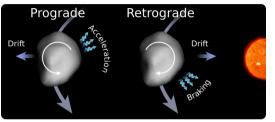
= Case 3. Direct Yarkovsky detection

• Yarvkosky effect

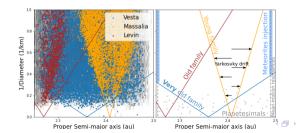
- Non-gravitational
- Delayed thermal radiation
- ► Main evolutionary process

Adapted from Bottke+2022

Landscape in 2020s


What comes next?

Summary


= Case 3. Direct Yarkovsky detection

• Yarvkosky effect

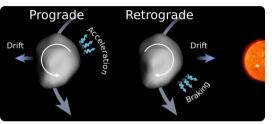
- Non-gravitational
- Delayed thermal radiation
- ► Main evolutionary process
- Prints of Yarkovsky
 - Striking in the population
 - Hard to detect on individuals
 - Crucial to time events

Adapted from Bottke+2022

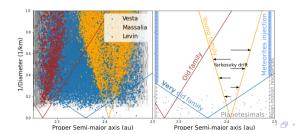
9/10 B. Carry, OCA, 2024/09/13

Landscape in 2020s

What comes next?


Summary

= Case 3. Direct Yarkovsky detection


• Yarvkosky effect

- Non-gravitational
- Delayed thermal radiation
- Main evolutionary process
- Prints of Yarkovsky
 - Striking in the population
 - Hard to detect on individuals
 - Crucial to time events
- A case for extreme astrometry
 - Sporadic observations
 - On favorable candidates
 - At mas / sub-mas level
 - $V \in [18,20+]$

9/10 B. Carry, OCA, 2024/09/13

Adapted from Bottke+2022

Challenges

Landscape in 2020s

What comes nex

Summary

—— Summary

- Solar System Objects are keys to understand planetary formation
 - Why is Solar system so different?
 - $\circ~$ Sequence of events \rightarrow (exo)planet formation
- Main-stream observational requirements for progresses
 - $\circ~4\pi$ astrometry with spectro- and time-photometry
- Some niches for targeted extreme-precision astrometry
- Case 1. Characterization of binary asteroids
- Case 2. Masses from close encounters
- Case 3. Direct detection of Yarkovsky drift
- Solar System Objects specificities
 - $\circ~$ Motion \rightarrow limitation on exposure time or co-adds
 - $\circ~$ Changing brightness \rightarrow geometry of observation?