High-Precision Astrometry of Small Stellar Systems

Laura Watkins she/her/hers AURA for ESA, ESA Office, Space Telescope Science Institute

A Future Space Mission with Very-High Precision Astrometry · IAP · September 2024

NASA, ESA and the Hubble Heritage Team (STScI/AURA)

Small Stellar Systems

Dwarf Galaxies (Carina, ~100 kpc)

Globular Clusters (M15, ~10 kpc)

Gaia DR2 view of the Milky Way

https://www.astro.rug.nl/~ahelmi/research/dr2-dggc/

The Local Group

100

- **Global Motions:**
 - Orbits / environments / link to star formation histories +
 - Planes of satellites, streams
 - Properties of the Milky Way / M31 / Local Group

Formation and **Evolution**

- **Global Motions:**
 - Orbits / environments / link to star formation histories
 - Planes of satellites, streams
 - Properties of the Milky Way / M31 / Local Group
- **Internal Motions:** •
 - Mass (dark matter, core/cusp, IMBH) •
 - Rotation, anisotropy •
 - Dynamical differences with mass, chemistry, colour

Formation and **Evolution**

 10^{-8}

 10^{-3}

 10^{-2}

 10^{-1}

 10^{0}

 $r \; [
m kpc]$

 10^{2}

 10^{1}

- + Global Motions:
 - Orbits / environments / link to star formation histories \blacklozenge
 - Planes of satellites, streams
 - Properties of the Milky Way / M31 / Local Group
- **Internal Motions:** •
 - Mass (dark matter, core/cusp, IMBH) \blacklozenge
 - Rotation, anisotropy
 - Dynamical differences with mass, chemistry, colour

Formation and **Evolution**

- **Global Motions:**
 - Orbits / environments / link to star formation histories
 - Planes of satellites, streams, effects of tides
 - Properties of the Milky Way / M31 / Local Group
- **Internal Motions:** •
 - Mass (dark matter, core/cusp, IMBH)
 - Rotation, anisotropy
 - Dynamical differences with mass, colour

Membership selection for other studies

Formation and **Evolution**

What factors do we need to consider?

- Time baseline between first and last epoch
- Number of epochs, observations at each epoch +
- **Precision of measuring stellar positions, PSFs** •
 - Effects of crowding
- Number of stars with proper motions
 - Overall, in region of interest / spatial coverage, depth, filter
- Measuring proper motions using multiple instruments/observatories +
 - Often increases baseline but introduces systematics
- Availability of line-of-sight velocities, distances

Precision and **Accuracy**

What can we already do? And what can't we do? (not an exhaustive list)

We can already do a lot! BUT For individual objects or small samples over limited ranges \rightarrow biased/incomplete.

Combining Observatories

- Hubble + Gaia
 - **GaiaHub** (del Pino et al. 2022) optimised for crowded fields **BP3M** (McKinnon et al. 2024) — optimised for sparse fields

 - Hubble baselines and Hubble spatial coverage for Gaia-bright stars
- Hubble + JWST
 - Libralato et al. (2022) •
 - H+JW PMs in JWST calibration field in LMC, Hubble baseline (~16 years)
 - JWST Telescope Scientist Team: •
 - JWST-JWST PMs for MW and M31 dwarfs (coming in Cycle 3)

-		
è		
-		
C		
0		
č		
-		
5	-	
	-	_
	-	_
C	-	_
	-	-
	-	-
	-	-
C		
0	-	_
-		
	-	- 1
	-	
2		
C		
C		

Dwarf Galaxy Internal Kinematics

Hubble +

- 18 year baseline, first PM dispersion profile in a dwarf (Vitral+ 2024)
- Central density profile •
- \blacklozenge

See Eduardo's talk from Wednesday

Gaia too bright, too few stars, pushing limits of HST, JWST data coming

- van der Marel & Anderson (2010): upper limit M_{IMBH} < ~1.2 × 10⁴ M_{sun}

Hubble

- Relative internal PMs of 22 MW GCs (Bellini+ 2014) •
- Energy equipartition in 9 of sample, support theory (Watkins+ 2022)

Globular Clusters - Energy Equipartition

Mass of the Large Magellanic Cloud

Gaia, Hubble or Gaia+Hubble

- 6D catalogue of 32 GCs using PMs from GaiaHub (Bennet+ 2022) •
- \blacklozenge

Some GCs excluded because no D or LOSV.

Used 30 GCs: mass out to ~13 kpc, extrapolate total mass (Watkins+ 2024)

Mass of the Small Magellanic Cloud

- Gaia, Hubble or Gaia+Hubble •
 - PMs of SMC GCs using GaiaHub (Bennet+ in prep)

Uncertainties too large + too few GCs to measure anisotropy or estimate mass

Orbits of Local Group Dwarfs ↔ SFHs

- Gaia+Hubble (GaiaHub)

Bennet, Patel + 2024

PMs Outside the Local Group(!)

Hubble

- ~3.6 Mpc, 20-year baseline
- First time measuring PMs outside of the Local Group
 - Future of the M81 group?
 - Masses? •
 - Motion of the M81 group relative to the LG?

Stay tuned!

Cycle 31 program to measure PMs in M81, M82 and NGC 3077 (PI: Bennet)

High-Precision Astrometry of Small Stellar Systems

- **Internal Dwarf Kinematics**
 - Central density of **Draco** with 18 years of Hubble
- **Internal GC Kinematics** •
 - IMBH in **ωCen** •
 - Central equipartition in 9 nearby GCs
- **Global Dwarf and GC Kinematics**
 - MW mass, LMC mass, M31 mass •
 - MW/M31/LG dwarf orbits •
 - M81 group kinematics

just one classical dwarf

just one (weirdo) GC only 9/150 GCs, no radial profiles

SMC not possible, error bars still large error bars still large only 1 system outside LG, what about GC systems outside the LG?

Laura Watkins · ESA-AURA, STScl

High-Precision Astrometry of Small Stellar Systems

Hubble + Gaia : astrometric powerhouses (excited for JWST, Euclid, Roman!) • BUI We can already do a lot of cool stuff, separately and combined! Single/few objects, small samples, distance limited, spatially limited, biased.

Laura Watkins · ESA-AURA, STScl