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Hypervelocity Stars

e Discovered in 2005 by Warren Brown
e More than 20 are now known, over 800 candidates
* Move with radial velocity +400 to +800 km/s, escaping the Galaxy
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Some HVS escape the Galaxy, some are gravitationally bound
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Radial velocity translated to
the Galactocentric frame.

For most HVS the flight time
from the Galactic center to
the current position is
shorter than their main-
sequence lifetime.

Brown 2015
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Do they come from
Galactic Center?
Probably

Probability of ejection
from a region from the
Galactic plane, based on
astrometric proper
motions with ACS and
WFC3 cameras on HST
2006-2012

For 13 of 16 stars, origin
is consistent with
ejection from the
Galactic center, but the
uncertainty is large

Brown, Anderson, OG et al. 2015



The fastest HVS

Koposov et al. 2020: V = 1750 km/s
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Figure 5. Left-hand panel: The constraints on the origin of S5-HVS1 in the Galactic plane. The location of the Sun, Solar circle, and the GC are indicated by
a star symbol, grey dotted line, and red cross, respectively. The black contour shows the 90 per cent confidence region of the origin of S5-HVS1 constructed
using spectrophotometric distances, while the grey contour shows the constraints if we use less well-determined photometric only distances. Both of these
contours contain the GC. The small inset shows the central 2.5 x 2.5 kpc? region around the GC. Right-hand panel: 90 per cent confidence regions in Galactic
X, Y for the point of origin of various hyper-velocity stars under the assumption that they come from the Galactic plane. We only included stars with contours
that significantly overlap with the 30 x 30kpc? region shown. The confidence regions for the S5-HVS1 origin are the barely visible grey and black streaks

around the GC compared to all other stars.



HVS orbits trace the Galactic potential
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Whether HVS are bound depends on the mass distribution in
the Galaxy on all scales
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Escape velocity to infinity is 970 km/s from 1 pc, 720 km/s from 1 kpc, 540 km/s from 10 kpc
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Galactic Nucleus is dense and flattened:
leads to significant deceleration and anisotropic orbits of HVS

central cluster mass =2 x 10’ M

half-light radius = 4 pc
axis ratioc/a = 0.7
density profile p(r) ccr
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Predictions of Cold Dark Matter model match observations of galaxy
clustering on scales larger than individual galaxy

Predictions on galactic scales (density profile, number of satellites) are
heavily modified by baryon physics (cooling and feedback)

Triaxial shape of dark matter halo is least affected by the baryon effects,
and therefore is one of the most robust predictions of CDM theory
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In the inner regions where baryons dominate mass, halos turn more round.
In the outer regions, halo retains the shape acquired from accretion along
cosmic filaments.
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20-50 kpc are uncertain and consistent with spherical



Halo triaxiality is a test of dark matter physics. WDM predicts much rounder shape.
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Origin at the Galactic Center is necessary for this test

05 T T T | I
HVSS5 | Ejection from the Galactic
X disk outside the center
0.4 N 1 results in larger change of
T the proper motion than
— R halo triaxiality
| 0.3} AN ]
2, .
¥a] Y
f'j b
g g
~ 02} A .
=
0.1F /
20% distance
uncertainty
UU ] ] ] ] ]
0.7 0.8 0.9 1.0 1.1 1.2

py (mas yr=!)



Constraints on the axis ratios of triaxial halo from p.m. measurement
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Constraints on the axis ratios of triaxial halo from p.m.

HVS 5 and 9
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Simultaneous measurements of proper motions for two stars in orthogonal
directions on the sky breaks the degeneracy, even if distances are poorly known



Beyond Gaia

We need proper motion accuracy of 0.01 mas/yr

End-of-mission Gaia accuracy for the HVS brightness will be 0.04 —
0.15 mas/yr

We have established the astrometric frame with HST.
Future measurements with JWST could improve proper motion
accuracy by a factor 2-3

Future astrometric mission with accuracy at least 10 times Gaia
could set the unprecedented constraints on halo shape
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