Astrometric Explorations of Gravitational Waves

Yifan Chen Niels Bohr International Academy yifan.chen@nbi.ku.dk

13 September 2024, IAP, Paris A future space mission with very high precision astrometry

KØBENHAVNS UNIVERSITET

GW Detection with PTA or Astrometry

- GW perturbs photon geodesics and the emission/observer point.
- Galactic GW detectors:

• Astrometry: proper motion of $\mathcal{O}(10^9)$ stars/AGNs on celestial plane.

PTA results consistent with quadrupolar correlations and supermassive black hole population [NANOGrav 23']:

Galaxy Tomography with SGWB Spectrum

Stars and dark matter cause low-frequency turnover through 3-body ejections.

GW Variance and Parameter Estimation

 Stochastic GW challenges parameter estimation.

 \rightarrow GW variance:

 $\sigma^2(\mathcal{P}_P) \propto \langle hhhh \rangle \propto \mathcal{P}_P^2.$

- Variance in configuration space (θ) is correlated.
 [Allen 22']
- Harmonic space: $X_{\ell m} \in (z_{\ell m}, E_{\ell m}, B_{\ell m})$:
- SNR saturates at strong signal, ℓ_{max} ~ √N_X/2.
 Astrometry with N_X ~ 10⁹ can help.

[Çalışkan, YC, Dai, Kumar, Stomberg, Xue, JCAP 2312.03069]

Amplitude and Spectral Index

Power-law SGWB:
$$h_c \equiv A \left(\frac{f}{f_{ref}}\right)^{\alpha}$$
.

- Fiducial: A ~ 10⁻¹⁵, α ~ -²/₃ is consistent with SMBHB.
- 4 examples:

Current: NANOGrav, Gaia,

Future: SKA, XG-Gaia.

 XG-observations:
 SKA and XG-Gaia measures spectrum precisely.

Total SNR and Circular Polarization

► *zz*, *EE*, *BB* and *zE* pairs are sensitive to total intensity $I \equiv \langle h_L h_L + h_R h_R \rangle$. Gaia observation can marginally cross-check PTA results.

[Çalışkan, YC, Dai, Kumar, Stomberg, Xue, JCAP 2312.03069]

• *EB* and *zB* are sensitive to circular polarization $V \equiv \langle h_L h_L - h_R h_R \rangle$.

Synergistic observation with NANOGrav-Gaia can resolve circular polarization fraction V/I better than Gaia-only observation.

Photon Ring Astrometry for Metric Perturbations

Event Horizon Telescope: best-ever angular resolution from VLBI. **Future: ngEHT** and space-VLBI **BHEX**.

Photon bound orbits outside BHs:

Photon ring with enhanced intensity.

 \rightarrow GR and BH test.

[Fundamental Physics Opportunities with the ngEHT, Ayzenberg et al, 2312.02130]

Astrometry for gravitational waves?

Image: A matching of the second se

Geodesics deviations grow exponentially near critical orbits.

- Ultralight boson clouds
- Ringdown tomography
- [YC, Xue, Brito, Cardoso, PRL 2211.03794]. [Zhen, Cardoso, YC, 2408.10303].

Summary

- SGWB at nHz have been confirmed by PTA through spatial correlations. Potential turning at low frequency: galaxy tomogrphy?
- **GW** variance challenges parameter estimation, easier in harmonic space.
- Astrometry can help with 10⁹ stars and polarization sensitivity.
- > Photon ring astrometry: boost deviation via orbit instability near BH.

Thank you!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Backup

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

GW Detection with PTA or Astrometry

- GW perturbs photon geodesics and the emission/observer point.
- Galactic GW detectors:

• **PTA**: photon frequency shift from $\mathcal{O}(100)$ milli-second pulsars.

Redshift $\delta z \propto n^i n^j h_{ij}(E) + \cdots + h_{ij}(P)$.

Pulsar term $\sim h_{ij}(P)$ is usually **neglected** due to distance uncertainty and incoherent among different pulsars.

Timing residue $\sim \int \delta z dt$: sensitivity decreases at higher frequency.

- Astrometry: proper motion of $\mathcal{O}(10^9)$ stars/AGNs on celestial plane. Angular deflection $\delta n^i = R^{ijk} h_{jK}(E)$ [Book, Flanagan 10'].
- ▶ Distinct response functions between PTA $(R^{ij} \propto n^i n^j)$ and astrometry (R^{ijk}) show complimentary sensitivity to GW polarization.

Stochastic Gravitational Wave Background

- Stochastic GW background: incoherent sum of GWs at each frequency.
- ► Two-point correlations using power spectral density $\mathcal{P}_P(f, \hat{\Omega})$: $\langle h_P(f, \hat{\Omega}) h_{P'}(f', \hat{\Omega}')^* \rangle = \delta(f - f') \, \delta(\hat{\Omega}, \hat{\Omega}') \, \delta_{PP'} \mathcal{P}_P(f, \hat{\Omega}), \ P \in (L/R).$
- ► N_X observables $X \sim R_X^{ij} h_{ij} \to N_X (N_X 1)/2$ pairs : $\langle XX' \rangle \propto \mathcal{P}_P \Gamma_{XX'}$.
- ► Isotropic GW → generalized Hellings-Downs curves [HD 83', Mihaylov et al 18']: $\Gamma_{XX'} \propto \int R_X^{ij} \epsilon_{ij} R_{X'}^{lk} \epsilon_{lk} d\Omega$, GW polarization basis ϵ_{ij} .
- Microscopic quadrupolar tensor nature emerges at macroscopic scales.

Stochastic Gravitational Wave Background

- Stochastic GW background: incoherent sum of GWs at each frequency.
- Two-point correlations using power spectral density $\mathcal{P}_{\mathcal{P}}(f, \hat{\Omega})$:

 $\langle \mathbf{h}_{\mathcal{P}}(f, \hat{\mathbf{\Omega}}) \mathbf{h}_{\mathcal{P}'}(f', \hat{\mathbf{\Omega}}')^* \rangle = \delta(f - f') \, \delta(\hat{\mathbf{\Omega}}, \hat{\mathbf{\Omega}}') \, \delta_{\mathcal{P}\mathcal{P}'} \mathcal{P}_{\mathcal{P}}(f, \hat{\mathbf{\Omega}}), \ \mathcal{P} \in (L/R).$

- ► N_X observables $X \sim R_X^{ij} h_{ij} \to N_X (N_X 1)/2$ pairs : $\langle XX' \rangle \propto \mathcal{P}_P \Gamma_{XX'}$.
- ► Isotropic GW → generalized Hellings-Downs curves [HD 83', Mihaylov et al 18']: $\Gamma_{XX'} \propto \int R_X^{ij} \epsilon_{ij} R_{X'}^{lk} \epsilon_{lk} d\Omega$, GW polarization basis ϵ_{ij} .
- Microscopic quadrupolar tensor nature emerges at macroscopic scales.

Generalized Hellings Downs Curves with Cosmic Variance

- ► Gaussian SGWB $\mathcal{P}_P \propto \langle hh \rangle$ \rightarrow GW variance: $\sigma(\mathcal{P}_P) \propto \langle hhhh \rangle \propto \mathcal{P}_P.$
- Total uncertainty = noise + total variance + cosmic variance [Allen 22']
- Cosmic variance persists in the limit $N_X \to \infty$.
- Variance in configuration space (θ) is correlated.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Harmonic Space Estimators

Spherical harmonic expansion [Gair et al 14', Qin et al 18']:

$$\delta z_a = z_{\ell m} Y_{\ell m}(n_a), \qquad \delta n_a = \mathbf{E}_{\ell m} \mathbf{Y}^{\mathbf{E}}_{\ell m}(n_a) + \mathbf{B}_{\ell m} \mathbf{Y}^{\mathbf{B}}_{\ell m}(n_a), \qquad \ell \geq 2.$$

▶ Diagonalization in harmonic space $X_{\ell m} \in (z_{\ell m}, E_{\ell m}, B_{\ell m})$:

 $\langle X_{\ell m} X_{\ell' m'}^{\prime} \rangle \propto C_{XX'}^{\ell} \delta_{\ell \ell'} \delta_{mm'}, \qquad \sigma(X_{\ell m} X_{\ell m}^{\prime}) \propto |C_{XX'}^{\ell}|^2 + C_{XX}^{\ell} C_{X'X'}^{\ell m}.$

SNR saturates at strong signal region, dependent on $\ell_{\max} \sim \sqrt{N_X/2}$. Astrometry with $N_X \sim 10^9$ can help. However, $C_{EE/BB}^{\ell} \propto 1/\ell^6$ and $C_{zz}^{\ell} \propto 1/\ell^4$.

Low-frequency Turnover in SGWB Spectrum

- **Circular orbit** driven by GW emission: $h_c \propto f^{-2/3}$.
- **NANOGrav** data slightly prefers a spectrum turnover at $f_{\min} = 2 \text{ nHz}$:

- Hardening process or highly eccentric orbits?
- As $f_{\min} \sim 1/T$ and T = 15 yrs, longer observation time can confirm.

イロト イポト イヨト イヨト

3

Orbital Hardening with Stars or Dark Matter

SMBHB formation:

- Final parsec problem: 3-body ejection of stars/dark matter.
- Dominant orbital hardening rate between dynamic friction (early) and GW emission (late).

イロト 不得 トイヨト イヨト

-

Three-body Scattering vs N-body Simulation

- ► Hardening rate from 3-body scattering experiment [Quinlan 96']: $\frac{da}{dt} \propto \frac{G\rho}{\sigma} a^2$; and eccentricity growth $\frac{de}{dt} > 0$.
- ▶ More efficient than 2-body dynamical friction within the hardening radius $a_h \equiv r_i q/(4(1+q)^2)$ where $\int_0^{r_i} \rho d^3 x = M_{\rm BH}$.
- Strong backreaction:

N-body simulation: 2 dressed clumps \rightarrow 1 flat core [Milosavljević, Merritt 01']:

[Merritt, Milosavljević 02']

• Orbital evolution of the two methods match by taking ρ/σ at r_i [Sesana, Khan 15'].

Galactic Center Distribution and SGWB Spectrum

- ► Galactic center distribution prior to disruption: $\rho(r) = \rho_{pc} \left(\frac{r}{1 pc}\right)^{-\gamma}$; e.g., $\gamma = 0$ (core), 1 (NFW), 7/3 (spike).
- Each (ρ_{pc}, γ) and (M_{BH}, q) determines r_i where binary is formed with e_0 .
- SGWB prediction: evolving de/da for each (M_{BH}, q, ρ_{pc}, γ, e₀) from r_i, and integrated over SMBHB population (M_{BH}, q, z) from holodeck.
- Gaussian prior on normalization of the population distribution.
- Best-fit spectrum for various e₀:

Data Analysis

- 3-body scattering is necessary with $\rho_{\rm pc} = 10^{(5.5^{+1.7}_{-2.5})} M_{\odot}/{\rm pc}^3$, unless $e_0(r_i) > 0.999$.
- Degeneracy between ρ_{pc} and γ follows constant ρ_i/σ_i.
 Low γ is favored.
- Degeneracy between ρ_{pc} and e₀: resolving coherent individual or checking correlations among different frequencies [Raidal et al 24'] ?

- Nano-hertz SGWB have been confirmed by PTA through spatial correlations.
- The SGWB spectrum is consistent with SMBHB.
- Potential turnover at low frequency:
 - 3-body ejection of galactic-center stars or dark matter;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- High eccentricity?
- Future:
 - breaking degeneracy of $\rho_{\rm pc}$ and e_0 .
 - distinguishing stars or dark matter?

$$\begin{split} \frac{\mathrm{d}a}{\mathrm{d}t} &= -\frac{64}{5}\frac{G^3M^3}{c^5a^3}\frac{q}{(1+q)^2}\frac{(1+\frac{73}{24}e^2+\frac{37}{96}e^4)}{(1-e^2)^{7/2}} - HG\frac{\rho_i}{\sigma_i}a^2,\\ \frac{\mathrm{d}e}{\mathrm{d}t} &= -\frac{304}{15}\frac{G^3M^3}{c^5a^4}\frac{q}{(1+q)^2}\frac{e(1+\frac{121}{304}e^2)}{(1-e^2)^{5/2}} + HK(e,a)G\frac{\rho_i}{\sigma_i}a.\\ H &\approx 18, \qquad K \approx 0.3e\left(1-e^2\right)^{0.6}\left(1+\frac{a}{0.2\,a_h}\right)^{-1} \end{split}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Photon Ring Astrometry for Gravitational Atoms

Superradiant clouds generate local oscillatory metric perturbations $g_{\mu\nu} \simeq g_{\mu\nu}^{\rm K} + \epsilon h_{\mu\nu}$ that deflect geodesics $x^{\mu} \simeq x_{(0)}^{\mu} + \epsilon x_{(1)}^{\mu}$:

- Axion/scalar cloud mainly causes time delay [Khmelnitsky, Rubakov 13'].
- Polarized vector or tensor cloud contribute to both time delay and spatial deflection.
- Photon ring autocorrelations [Hadar et al 20] probe M_{cloud}/M_{BH} to 10⁻³ for vector and 10⁻⁷ for tensor.